

Water Framework Directive Assessment (RAPID Gate Two)

Fens Reservoir

November 2022

Confidential

This page left intentionally blank for pagination.

Mott MacDonald 2 Callaghan Square Cardiff CF10 5BT United Kingdom

T +44 (0)29 2046 7800 mottmac.com

Anglian Water Services Thorpe Wood House Thorpe Wood Peterborough PE3 6WT

Water Framework Directive Assessment (RAPID Gate Two)

Fens Reservoir

November 2022 Confidential

Issue and Revision Record

Revision	Date	Originator	Checker	Approver	Description
P01	23/08/2022	JC CS ER	EH	MD	Draft for project and client team review
P02	26/10/2022	CS	EH	MD	Response to project and client team comments
P03	09/11/2022	ER	EH	JF	Updated response to client team comments
P04	11/11/2022	ER	EH	JF	Final version after client amendments

Document reference: | | 421065059-GT2-MMD-XX--XX-RP-Z-0009-P04

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Exe	ecutive	summa	ary	1	
1	Intro	duction		2	
	1.1	Overvie	9W	2	
	1.2	Fens R	eservoir	2	
	1.3	Scheme	e overview	2	
	1.4	Method	lology	2	
		1.4.1	Approach to WFD assessment for SROs	2	
		1.4.2	Level 1 - basic screening	3	
		1.4.3	Level 2 - detailed impact assessment	4	
		1.4.4	WFD assessment at gate three and beyond	4	
	1.5	Assum	ptions and limitations	5	
2	Sch	eme Des	scription	6	
	2.1	Scheme	e overview	6	
		2.1.1	Reservoir overview	6	
		2.1.2	Raw water abstraction and transfers	8	
		2.1.3	Water treatment and potable transfers	8	
		2.1.4	Summary of operation and use	9	
		2.1.5	Associated infrastructure and features	9	
3	Cha	nges sin	nce Gate One	10	
4	Sup	porting 1	Fechnical Assessment	11	
	4.1	Gate or	ne assessment	11	
	4.2	Preferre	ed site selection	11	
	4.3	Level 1	WFD assessment for transfers	11	
	4.4	Hydro-6	ecology	12	
	4.5	Water	quality modelling	12	
5	WFI	O Assess	sment	13	
	5.1	Level 1	Assessment	13	
	5.2	Level 2	Assessment	14	
		5.2.1	Assessment methodology	14	
		5.2.2	Standard mitigation and good practice	15	
		5.2.3	Level 2 Summary	15	
	5.3	Summa	ary	17	
	5.4	Risk of	deterioration	19	
	5.5	5.5 In-combination effects			

	5.6 5.7	Requirements to improve confidence level Mitigation measures	21 22
6	Cond	clusions	23
	6.1	Conclusion	23
	6.2	Recommendations	23
App	endice	es established to the second of the second o	24
A.	WFD	Level 1 Assessment	25
B.	WFD	Level 2 Assessment	26
Tab			
		npact scoring system used for WFD assessment	4
		evel 1 WFD screening classification	13 13
		evel 1 WFD assessment summary (waterbody screening) xplanation of WFD confidence levels, based on ACWG methodology	14
		escription of WFD risk levels/outcomes	15
		ummary of WFD waterbodies affected	18
		lineral and waste allocation projects in same water bodies as Fens scheme.	21
Tabl	e 6.1: S	ummary of Level 2 WFD assessment results	23
Figu	ıres		
Figu	re 2.1: \$	Site context map	7
Figu	re 2.2: F	Proposed transfer corridors	9

Executive summary

This informal Water Framework Directive (WFD) assessment supports the Environmental Appraisal that accompanies the gate two submission to the Regulators' Alliance for Progressing Infrastructure Development (RAPID) for the Fens Reservoir (FR) Strategic Resource Option (SRO). This report presents the findings of the WFD assessment for all scheme elements including abstraction, transfers including pumps, storage, treatment and distribution into supply and the reservoir.

The two-stage WFD assessment follows the approach outlined in the All Company Working Group (ACWG) framework for undertaking WFD assessments for SROs (ACWG, 2020).

Level 1 assessment identified 13 waterbodies which could potentially be affected by the scheme. Following the Level 1 assessment, three of these waterbodies were identified as requiring further assessment, due to the potential effects on WFD waterbodies. Best available design information at the time of writing was used to undertake the assessment including preliminary abstraction, reservoir design and transfer alignments.

The findings from the Level 2 assessment include the following:

- Minor localised effects identified to the Middle Level from the loss of open watercourse and 1.1% of the catchment due to the presence of the reservoir. This loss of catchment and watercourses could impact on habitat, flow and hydromorphology within this waterbody.
- A potential amber adverse risk to biological quality elements within the River Great Ouse (Roxton to Earith) was identified as a result of the new surface water abstraction. Abstraction rates are expected to reduce the flow volume and velocity. This change could potentially impact on biological status elements. A minor localised risk on the hydrological regime and water quality are anticipated. Further investigation is required to determine the full extent of the impacts.
- A potential amber adverse risk to the Old Bedford River/River Delph (incl. the Hundred Foot Washes) was identified as a result of the new surface water abstraction. Abstraction rates are expected to reduce the water levels and flow velocity. This reduction in level could lead to a deterioration in hydrological regime from the current High status. Additionally, this change could impede fish migration and cause deterioration to the habitat. A minor localised risk on the hydrological regime and water quality are anticipated. Further investigation is required to determine the full extent of the impacts.

Further updates to this WFD assessment would be required as the Scheme is further developed (i.e. for gate three and beyond) to improve the levels of certainty for the WFD related risks outlined in this assessment. Further investigations are also recommended to improve the levels of certainty including: continued hydroecology studies to understand the impact of reduced flow on the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) catchments; and additional water quality monitoring (both continuous and spot) on the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) waterbodies. This data should then be used in further water quality analysis to determine the effects of the abstractions on river water quality and biological quality elements.

1 Introduction

1.1 Overview

This report supports the Environmental Appraisal for the FR SRO gate two submission to the RAPID. It presents the findings of the informal WFD assessment of the scheme, based on best available information and provides an update to previous assessments.

1.2 Fens Reservoir

A new strategic reservoir in Cambridgeshire, referred to as the FR, has been proposed for development as one of several nationally strategic water resource options required to address increasing deficits in public water supply. The scheme is promoted by Anglian Water and Cambridge Water and is being progressed through the fast-tracked delivery framework overseen by the RAPID.

The FR has previously progressed through gate one in 2021, the first opportunity to check progress on investigations and development of solutions in the gate process and is now at gate two. Gate two is intended to look at solutions in more detail, with focus on ensuring that funding for continued investigation and development of solutions is aligned to water resources planning.

This report presents a scheme wide WFD assessment of the scheme including abstraction, conveyance including pumps, storage, treatment and distribution into supply and the reservoir itself.

1.3 Scheme overview

The proposed reservoir site is located within the Fenland district of Cambridgeshire. The proposed site is between Chatteris and March, near to Doddington, Wimblington and Manea. The Forty Foot Drain, the Sixteen Foot Drain and the A141 surround the site on three sides. At its greatest dimensions the reservoir is approximately 2.6km wide and 2.4km long to the embankment toe. This is based on the initial concept design and is subject to further work at gate three.

It is proposed that water is abstracted from the River Great Ouse at an intake located south of Earith and transferred to the reservoir via a pipeline. An additional abstraction point is also proposed from the River Delph. The precise abstraction locations will be identified following further detailed work (including stakeholder engagement) for gate three.

Further details on the scheme are set out in Section 2.

1.4 Methodology

1.4.1 Approach to WFD assessment for SROs

The WFD is transposed into law for England and Wales and is set out in The Water Environment (Water Framework Directive) (England and Wales) Regulations 2003 and updated in 2017¹.

The WFD requires all waterbodies (both surface and groundwater) to achieve 'good status or potential'. The Directive also requires that waterbodies experience no deterioration in status or

¹ https://www.legislation.gov.uk/uksi/2017/407/made

potential. Good status/potential is a function of good ecological status/potential (biological, physico-chemical and hydromorphological elements and specific pollutants) and good chemical status (Priority Substances and Priority Hazardous Substances).

The ACWG² has developed a consistent framework for undertaking WFD assessments for SROs to demonstrate that options will not cause deterioration in status/potential of any WFD waterbodies. The assessment considers mitigation that would need to be put in place to protect waterbody status/potential. The assessment also considers WFD future objectives to ensure the option would not preclude affected WFD waterbodies from reaching good status/potential.

Two stages of assessment are completed under the ACWG approach (2020), an initial Level 1 basic screening and a Level 2 detailed impact screening. These are conducted/reported using a spreadsheet assessment tool which is automated based on option information for Level 1 and expert judgment for Level 2. Further detail on the WFD classifications and approach adopted can be found in the ACWG approach (2020).

This package of works includes the WFD assessment of the reservoir footprint, abstractions, discharges and transfers associated with the proposed reservoir.

1.4.2 Level 1 - basic screening

The Level 1 assessment applied the following steps to screen waterbodies:

- Identify affected waterbodies
- Review SRO scheme design information
- Identify possible impacts
- Apply 'embedded' mitigation measures
- Calculate screening score (using a 6-point scale see Table 1.1) to 'screen out' waterbodies
 and options with no or minor localised potential impacts from further assessment (score of 1
 or less).

The process involves the identification of all activities involved in construction, operation and decommissioning for the SRO and identification of all WFD waterbodies which these activities may affect.

Following this, each activity is automatically assigned an impact score using the predetermined scores, as illustrated in

Table 1.1.

The scores assume some basic embedded mitigation is applied. If these mitigation measures do not apply or further measures are included in the design, then the impact score can be reassessed and the score manually updated. The mean and maximum impact score is then calculated for each waterbody. If the maximum impact is 1 or less, then the waterbody is not to be considered further and no further action is needed. If the maximum impact score is greater than 1 (i.e. there is the potential for deterioration at a waterbody scale) then the waterbody is taken forward into the level 2 assessment.

The outcomes of the Level 1 assessment are summarised in Section 4.1 and Appendix A. Where waterbodies and impacts were 'screened in', these have been taken forward to the Level 2 assessment.

² ACWG (2020). Water Framework Directive: Consistent framework for undertaking no deterioration assessments, November 2020.

Table 1.1: Impact scoring system used for WFD assessment

Impact	Score	Description
Very beneficial	-2	Impacts that, taken on their own, have the potential to lead to the improvement in the ecological status or potential of a WFD quality element for the entire waterbody.
Beneficial	-1	Impacts that, when taken on their own, have the potential to lead to a minor localised or temporary improvement that does not affect the overall WFD status of the waterbody or any quality elements.
No/minimal	0	No measurable change in the quality of the water environment or the ability for target WFD objectives to be achieved.
Low	1	Impacts that, when taken on their own, have the potential to lead to a minor localised, short-term and fully reversible effects on one or more of the quality elements but would not result in the lowering of WFD status. Impacts would be very unlikely to prevent any target WFD objectives from being achieved.
Medium	2	Impacts that, when taken on their own, have the potential to lead to a widespread or prolonged effect on the quality of the water environment that may result in the temporary reduction in WFD status. Impacts have the potential to prevent target WFD objectives from being achieved.
High	3	Impacts when taken on their own have the potential to lead to a significant effect and permanent deterioration of WFD status. Potential for high impact on preventing target WFD objectives from being achieved.

The outcomes of the Level 1 assessment are summarised in Section 5.1 and Appendix A. Where waterbodies and impacts were 'screened in', these have been taken forward to the Level 2 assessment.

1.4.3 Level 2 - detailed impact assessment

The second stage of WFD assessment has been completed for waterbodies that were screened in at Level 1, using the following steps:

- Waterbody scale detailed assessment of impacts to each WFD quality element (biological quality elements, hydromorphological supporting elements, physico-chemical quality elements, priority hazardous substances, priority substances and specific pollutants) of the footprint of the scheme³.
- Assessment of data confidence level and design certainty confidence levels are assigned
 for each assessment, based on professional judgement of the quality and availability of both
 physical data and design information at the time of assessment.⁴ Where the confidence
 levels are medium or low, the requirements for further data or design information in order to
 raise this confidence level at future RAPID gates will be listed in the WFD spreadsheet
 (Level 2 summary).
- Identification of further mitigation needs.
- Assessment of impacts after mitigation (scored using a 6-point scale).
- Identification of activities to improve the certainty of assessment outcomes.

The outcomes of the Level 2 assessment are summarised in Section 6 and Appendix B.

1.4.4 WFD assessment at gate three and beyond

Where waterbodies and Scheme impacts have been identified, recommendations have been made for mitigation and increasing the confidence in the assessment. This is expected to be through increasing the level of detail available during later stages of the scheme development

³ Gate 1 assessed all activities associated with the SLR SRO, however a change in scope has resulted in the WFD only assessing the reservoir footprint only.

⁴ It should be noted that confidence/ certainty is anticipated to be low/medium at Gate 2 and increase over time.

for subsequent gateways, should the SRO progress. Both the Level 1 and 2 WFD assessment will be updated at Gate 3 following updated design information.

It is noted that the Cycle 3 River Basin Management Plans (RBMPs) are due to be published in 2022, which may bring about changes in the baseline status and objectives for waterbodies. Where necessary, changes will need to be accounted for in any subsequent updates to the WFD assessments.

1.5 Assumptions and limitations

Due to the level of design information available at this early stage, the WFD assessment has the following limitations and assumptions:

- Best available design information at the time of writing was used to undertake the assessment including indicative abstraction regime, reservoir design and transfer alignments.
- The ACWG approach uses WFD 2015 data, as it is the current officially reported baseline in the 2015-2021 Cycle 2 RBMP⁵. The RBMPs are anticipated to be updated in 2022, and 2019 WFD baseline data released in late 2020 would then become the new baseline. To make sure of consistency, the 2015 data has been used at gate one and two but acknowledge that this will need to be updated to the 2019 status as soon as the RBMPs are published (proposed for Gate three).
- Where there is no data available for the WFD element, this has not assessed as part of the Level 2 WFD assessment.
- Decommissioning of the reservoir and transfer have not been assessed as part of the Gate two assessment.
- It is assumed the Water Treatment Works (WTW) will treat water from the reservoir in line with regulatory standards before discharging to a local watercourse.
- It is assumed the reservoir embankments will contain a core of low permeability material, which will limit connection between the reservoir and local watercourses, excluding where formal discharges maybe present.
- If dewatering is required, a permit will need to be obtained from the Environment Agency. It
 is assumed the permit will cover water quality to ensure it is suitable to discharges into the
 watercourses
- This assessment only considers the waterbodies where the abstractions are located (River Great Ouse and River Delph). Consideration of the impacts on waterbodies downstream, and the associated impacts of the abstraction, will be included at gate three following further investigation.
- At the time of writing, the emergency drawdown design had not been confirmed as multiple
 options were under consideration. Emergency drawdown has therefore been excluded from
 this WFD assessment. It is expected that this will be included within the WFD assessment at
 the gate three once the design has been finalised.

⁵ River Basin Management Plans 2015. Available online at: https://www.gov.uk/government/collections/river-basin-management-plans-2015

2 Scheme Description

2.1 Scheme overview

The FR scheme includes the development of a new embanked raw water reservoir for water storage for public water supply. It also comprises abstractions from the River Great Ouse and River Delph, raw water transfers, treatment works, and distribution into supply.

Key scheme parameters include:

River Great Ouse maximum abstraction and transfer flow to reservoir: 300Ml/d
 River Delph maximum abstraction and transfer flow to reservoir: 400Ml/d
 Reservoir total capacity: 55Mm³
 Reservoir usable volume: 50Mm³
 Treatment distribution flow⁶: 150Ml/d

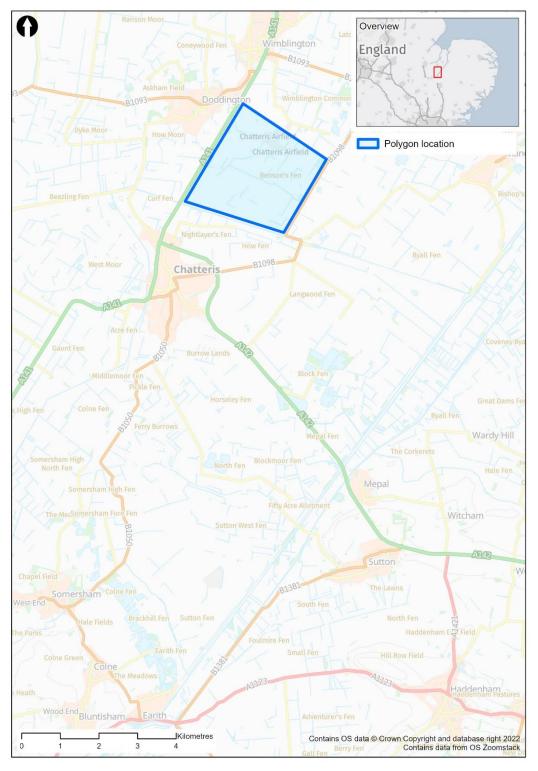
- Fens Reservoir to Anglian Water
- Fens Reservoir to Cambridge Water (North)
- Fens Reservoir to Cambridge Water (South)

2.1.1 Reservoir overview

The proposed reservoir site is shown in Figure 2.1, located within the Fenland district of Cambridgeshire. The proposed site is between Chatteris and March, near to Doddington, Wimblington and Manea. The Forty Foot Drain, the Sixteen Foot Drain and the A141 surround the site on three sides.

An indicative concept plan has been developed for the scheme. This indicative concept has been established to provide reference for cost and carbon estimation in gate two. The summary provisional details are provided below, but much work is still required to develop the scheme and the final details will develop accordingly.

The provisional reservoir parameters are:


- At its greatest dimensions the reservoir is about 2.6km wide and 2.4km long to the embankment toe.
- The embankment crest is estimated at 12.5m AOD (above ordnance datum) making the embankment an average of 12m above the typical existing ground level at the toe. This is with approximate relative embankment elevations of maximum 15m and a minimum of 4m above existing ground levels.
- The total perimeter length of the crest is about 8.5km and the estimated reservoir surface area is about 4.4km².

The reservoir would include key infrastructure necessary for its safe operation, including intake and outtake structures; drawdown facilities; a spillway and water sampling facilities. The reservoir will also be expected to provide benefits beyond public water supply. Opportunities to incorporate facilities to enable recreation (such as a visitor centre and parking), infrastructure to improve health and wellbeing (such as multi-use footpaths, quiet areas and leisure opportunities) and careful design to enhance and encourage biodiversity are planned and will

⁶ The proposed capacity of the water treatment works and transfer pipelines has been updated since this assessment was completed. The figures quoted in the gate two report include a scheme deployable output of 87Ml/d and works capacity up to 100Ml/d. These changes are not anticipated to have any material impact on the completed assessments.

be developed further, with the features that would deliver these wider benefits being subject to further assessment and consultation. Landscaping would be carefully designed surrounding the reservoir to minimise the visual impact of the reservoir whilst ensuring it sits within the existing landscape and delivers wider recreational and biodiversity benefits.

Figure 2.1: Site context map

2.1.2 Raw water abstraction and transfers

It is proposed that water is abstracted from the River Great Ouse at an intake located south of Earith and transferred to the reservoir via approximately 18km of 1500mm diameter steel pipeline. An additional abstraction point is also proposed from the River Delph, with water transferred to the reservoir by about 6km of 1600mm diameter steel pipeline. The precise abstraction location will be identified following further detailed work (including stakeholder engagement) for gate three.

The proposed abstraction rate from the River Great Ouse is up to 300Ml/d and from the River Delph up to 400Ml/d when flows allow. This is subject to further assessment to be undertaken in collaboration with the Environment Agency (EA) to develop an abstraction rate which is licensable. The associated abstraction licences are expected to stipulate a minimum flow and water level requirement at the point of abstraction below which it would not be possible to abstract. Abstraction to fill the reservoir would only be possible during high flow periods.

Further work is planned for the next stage to confirm locations for the abstraction points and routes for the transfers involving landowner engagement, environmental surveys, and preliminary ground investigations. The opportunity for the transfer conveyance to be open channel is still being investigated and will be confirmed during the next stage of project development. The information provided in this report and accompanying appendices are assumptions based on indicative locations only at this stage. The indicative transfer routes for are shown in Figure 2.2.

The abstraction facilities are expected to comprise an intake structure, a transfer pumping station (TPS) and pipeline.

2.1.3 Water treatment and potable transfers

Stored water will subsequently be abstracted from the reservoir and treated to a potable quality. It is proposed that a WTW is located on land adjacent to the reservoir with a peak throughput capacity of 100Ml/d.

It is proposed that the treated water will be transferred by an approximate 32km 900mm diameter steel pipeline to an existing Anglian Water Service Reservoir (SR). The Cambridge Water connection will include about 12km 900mm steel pipeline to one take-off point, and approximately 22km 700mm steel pipeline spur to a second take-off point. The reservoir is to supply over 250,000 homes in Cambridgeshire.

Further work is planned for the next stage to confirm the routes for the transfers involving landowner engagement, environmental surveys, and preliminary ground investigations. The information provided in this report and accompanying appendices are assumptions based on indicative locations only at this stage.

See Figure 2.2 for an illustration of indicative proposed transfer corridor locations.

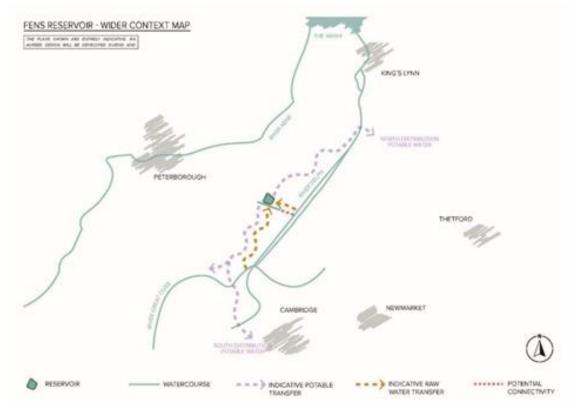


Figure 2.2: Proposed transfer corridors

2.1.4 Summary of operation and use

Development and operation of the reservoir will be subject to the Reservoirs Act 1975 (as amended by the Floods and Water Management Act 2010). The embankments and associated water retaining elements of the reservoir will need to be maintained and supervised in accordance with the Act to maintain public safety.

Provision of EDD must be designed in accordance with the Reservoirs Act. The proposed solution at this stage is to discharge to the Forty Foot Drain, but this is to be further modelled and confirmed as part of the next stage of development. Although the risk of needing to fully drawdown the reservoir is very low, there is a need for regular testing and maintenance to confirm functionality. This will involve the opening and testing of relevant valves and gates. Test flows are envisaged to be held in a pond to avoid disruption and to enable water to be returned back to the reservoir.

The operation and maintenance of the water treatment works and the distribution water supply system inclusive of distribution pump stations are expected to be in constant regular use according to water supply demand. The water supply components will need regular inspections and maintenance activities in accordance with the requirements of the respectively installed equipment.

2.1.5 Associated infrastructure and features

It is proposed that there will be a need for associated infrastructure and other features such as environmental mitigation to minimise the impacts of the reservoir, as well as enhancement opportunities. The location and design of the additional infrastructure has not been established and will therefore need to be confirmed at the next phase of scheme development.

3 Changes since Gate One

A site selection process has been undertaken to determine the location for the FR SRO option, which has been put forward to the RAPID gate two submission. This process has identified and assessed potential site locations against the following criteria: planning, community, environmental, economic and technical criteria (constraints and opportunities). The iterative approach was aligned with relevant legislation and national and local planning policy, including the draft National Policy Statement for Water Resources Infrastructure. Local planning authorities and statutory stakeholders have been consulted on the methodology, and local stakeholders have been engaged through the Fens Water Partnership.

Following completion of the gate one WFD assessment in 2021, the proposed reservoir location has been selected, and further design development work has continued. This has allowed the list of waterbodies requiring further WFD assessment to be refined for gate two.

This informal assessment is based on preliminary work to identify indicative transfer routes and abstraction locations. The waterbodies identified and associated with the different scheme elements are set out below.

Reservoir and transfers

GB205033000050 – Middle Level

Transfers only

- GB530503300300 River Great Ouse
- GB205033000010 Counter Drain (Sutton and Mepal IDB inc. Cranbrook Drain)
- GB205033000020 Counter Drain (Manea and Welney Internal Drainage Board (IDB))
- GB205033043375 Old West River
- GB105033042770 Swavesey Drain
- GB105033042680 Bin Brook
- GB205033047665 Relief Channel
- GB205033000030 Counter Drain (Upwell and Outwell IDB)
- GB205033047665 Relief Channel
- GB205033043375 Old West River
- GB40501G400400 North West Norfolk Sandringham Sands (Groundwater body)
- GB40501G445700 Cam and Ely Ouse Woburn Sands (GW)

Abstractions and transfers

- GB105033047921 River Great Ouse (Roxton to Earith)
- GB205033000060 Old Bedford River / River Delph (incl. the Hundred Foot Washes).

4 Supporting Technical Assessment

This section summarises supporting technical assessments that have influenced the gate two assessment. Ongoing workstreams, baseline data collection and analysis during gate two include, but not limited to, selection of the best performing site (as stated in Section 3), and hydraulic and hydro-ecology survey, modelling and monitoring.

4.1 Gate one assessment

Mott MacDonald carried out a Level 1 and Level 2 WFD Assessment for gate one in 2021 which assessed the risk of deterioration or impeding achieving 'good status' to a WFD waterbody based on various reservoir location options that were outlined in the optioneering phase. The findings indicated that there were precautionary WFD compliance risks associated with the abstractions and intakes.

4.2 Preferred site selection

In June 2022, strategic assessments were carried out on the short list of four reservoir location options, to help identify the best performing site. These assessments considered only the reservoir footprints and were based on the preliminary design information available at the time. The assessment for the best performing site has been used as the basis for this latest WFD assessment.

4.3 Level 1 WFD assessment for transfers

A Level 1 WFD Assessment was undertaken on indicative transfer routes comprising the following:

- A raw water transfer, approximately 18km in length, from a potential intake on the River Great Ouse to the FR
- A raw water transfer, approximately 6km in length, from a potential intake on the River Delph to the FR
- A treated water transfer, approximately 32km in length, from the FR to Anglian Water distribution
- A treated water transfer, approximately 12km in length, from the FR to Cambridge Water distribution
- A treated water transfer, approximately 22km in length, from the FR to Cambridge Water distribution.

The following assumptions were made in the assessment of these transfer routes:

- Operation and maintenance of the transfers were omitted from this assessment as the design and operation of the transfers is yet to be determined. An assessment of which will be undertaken at a later design stage.
- Regarding the construction methods of the pipelines, trenchless construction methods will be employed when crossing main rivers, watercourses, and watercourse links. The remaining lengths will be installed using trenching and laying methods.
- If the watercourse needs to be temporarily diverted, appropriate measures will be in put in place to protect ecology and the watercourse will be returned to its natural state.
- It is assumed that appropriate precautions will be taken when working in the channels of
 watercourses, to appropriately manage flood risk and the potential for deposition of silt or
 release of other forms of suspended material or pollution within the water column.

Based on these assumptions made, the transfers do not have the potential to cause deterioration to WFD status within waterbodies that interface with the pipeline network. Therefore, none of the waterbody catchments required a Level 2 assessment, where the transfer is the sole design element (see Section 5.2).

4.4 Hydro-ecology

In June 2022, Mott MacDonald undertook a Hydroecology study to consider implications of the scheme on aquatic habitats and species. This study concluded the following:

- Abstraction would only result in significant flow reduction during medium and high flow periods. Summer flows during high-discharge periods would not be significantly affected. The abstraction on the River Great Ouse (Roxton to Earith) will result in lower flows entering the River Delph (in the vicinity of the Ouse Washes). When combined with the second abstraction from the River Delph, this will drive lower water flows and levels across the designated site and flood storage area, which will primarily occur in winter when sufficient flows exist to allow abstraction.
- Potential impacts were identified on 18 protected species including six fish species, six
 aquatic invertebrate species and six macrophyte species. The fish species were assigned a
 Provisional Risk Rating of 'high' due to sensitivity to changes in flow. For the aquatic
 invertebrate and macrophyte species, all were assigned a Provisional Risk Rating of 'low'.
- For aquatic communities the impacts are considered 'limited' on the macroinvertebrate community biological indices.

4.5 Water quality modelling

Catchment water quality modelling for FR is currently underway using the Soil and Water Assessment Tool (SWAT) and was not complete at the time of writing this report.

This modelling investigates the nutrient source water quality (focusing on phosphorus and nitrogen) in the River Great Ouse upstream of the proposed abstraction locations. The outcomes from this modelling investigation will be incorporated into the WFD assessment at gate three, should this SRO progress beyond gate two.

5 WFD Assessment

5.1 Level 1 Assessment

Table 5.1 provides a key to describe the screening classification adopted in the Level 1 assessment, to identify whether waterbodies were screened in or out of further assessment, as defined in the ACWG approach (2020).

Table 5.1: Level 1 WFD screening classification

Green – Passes Level 1 WFD, no further assessment (score 1 or less)

Amber – Level 1 WFD score greater than 1, screened in for Level 2

A Level 1 assessment has been undertaken of the scheme. Table 5.2 summarises this assessment for gate two and provides context relating to the waterbodies affected. For the WFD waterbodies that have been identified, full details are included in Appendix A.

Table 5.2: Level 1 WFD assessment summary (waterbody screening)

Waterbody ID	Maximum impact score/ Screening outcome	Comment
GB530503300300 River Great Ouse	1	A new transfer will be located within this catchment. No significant impacts anticipated.
GB205033000050 Middle Level	3	The reservoir will be located in this waterbody, leading to the loss of catchment and several open channels. A new transfer will be located within this catchment. A new WTW will be located within this catchment.
GB205033000010 Counter Drain (Sutton and Mepal IDB inc. Cranbrook Drain)	1	A new pipeline will be located within this catchment. No significant impacts anticipated.
GB105033047921 River Great Ouse (Roxton to Earith)	3	A new surface water abstraction, intake structure and pipeline will be located within this catchment, leading to reductions in flow in this water course.
GB205033000020 Counter Drain (Manea and Welney IDB)	1	A new pipeline will be located within this catchment. No significant impacts anticipated.
GB205033000060 Old Bedford / River Delph (incl. The Hundred Foot Washes)	3	A new surface water abstraction, intake structure and pipeline will be located within this catchment, leading to reductions in flow in this water course.
GB205033043375 Old West River	1	A new pipeline will be located within this catchment. No significant impacts anticipated.
GB105033042770 Swavesey Drain	1	A new pipeline will be located within this catchment. No significant impacts anticipated.
GB105033042680 Bin Brook	1	A new pipeline will be located within this catchment. No significant impacts anticipated.

Waterbody ID	Maximum impact score/ Screening outcome	Comment
GB205033047665 Relief Channel	1	A new transfer will be located within this catchment. No significant impacts anticipated.
GB205033000030 Counter Drain (Upwell and Outwell IDB)	1	A new transfer will be located within this catchment. No significant impacts anticipated.
GB40501G445700 Cam and Ely Ouse Woburn Sands (GW)	1	A new transfer will be located within this catchment. No significant impacts anticipated.
GB40501G400400 North West Norfolk Sandringham Sands (GW)	1	A new transfer will be located within this catchment. No significant impacts anticipated.

The Level 1 assessment identified 13 waterbodies which could potentially be affected by the scheme. Following the Level 1 assessment, three of these waterbodies were identified as requiring further assessment, due to the scale of potential impacts on WFD waterbodies.

The following WFD surface water bodies were taken forward for assessment at Level 2:

- GB205033000050 Middle Level
- GB105033047921 River Great Ouse (Roxton to Earith)
- GB205033000060 Old Bedford / River Delph (incl. The Hundred Foot Washes)

5.2 Level 2 Assessment

5.2.1 Assessment methodology

The second stage of the WFD assessment has been completed for the scheme for waterbodies that were screened in at Level 1. Further information on the WFD classifications and approach adopted can be found in ACWG (2020). This assessment will be updated as design progresses and a full WFD assessment will be completed for consenting.

Table 5.3 provides a summary of WFD confidence levels used to inform the Level 2 assessment.

Table 5.3: Explanation of WFD confidence levels, based on ACWG methodology

Confidence Level	Description
Low	Gate 1 & 2 - Limited data and evidence available, based mainly or completely on expert judgement with many assumptions. Preliminary design information only, detailed information on location/routes, construction methods etc not yet available.
Medium	Gate 2 - Some data and evidence available, based partially on expert judgement with some assumptions. Design progressed but some assumptions made on construction methods etc.
High	Gate 3 & 4 - Lots of good data and evidence are available, minimal assumptions. Design advanced minimal assumptions needed.

Source: ACWG, 2020.

Table 5.4 describes the risk of deterioration between status classes, compromising waterbody objectives, and assisting attainment of waterbody objectives in the future. Each WFD supporting element has been assessed against the potential risk as a result of the activity occurring.

Table 5.4: Description of WFD risk levels/outcomes

Deterioration between status classes	Compromises waterbody objectives	Assists attainment of waterbody objectives
Yes = activities have a clear potential to cause deterioration of WFD status	Yes = activities clearly conflict with delivery of future improvements in WFD status	No = activities unlikely to contribute to achieving 'Good' status or potential
Possible = activities could cause deterioration of WFD status but unclear extent/level of effect	Possible = activities conflict with future improvements in WFD status but unclear extent/level of effect	Possible = activities could contribute to achieving 'Good' status or potential but unclear extent/level of effect
No = activities unlikely to pose any risk of deterioration in status	No = activities unlikely to pose any risk of deterioration in status	Yes = activities could directly contribute to achieving 'Good' status or potential

Uncertain = insufficient information or evidence to assess

Source: ACWG, 2020.

5.2.2 Standard mitigation and good practice

It is anticipated that construction activities will be managed through the use of good practice measures outlined in a construction environmental management plan (CEMP) for the scheme.

The CEMP shall be developed in accordance with Construction Industry Research and Information Association (CIRIA) Guidelines. Guidance on good practice in relation to pollution prevention and water management is set out in CIRIA's 'Environmental good practice on site' , CIRIA's 'Control of water pollution from linear construction projects; Technical Guidance' and the withdrawn Environment Agency's 'Protect groundwater and prevent groundwater pollution' Pollution Prevention Guidelines (PPG)5 'Works and maintenance in or near water', PPG6 'Working at Construction and Demolition Sites', PPG7 'The safe operation of refuelling facilities', and PPG13 'Vehicle washing and cleaning' Mhilst the Environment Agency PPGs were formally withdrawn in 2015, the guidance still provides useful information on good practice.

5.2.3 Level 2 Summary

The following WFD surface water bodies were assessed at Level 2:

- GB205033000050 Middle Level
- GB105033047921 River Great Ouse (Roxton to Earith)
- GB205033000060 Old Bedford River/River Delph (incl. the Hundred Foot Washes)

The Level 2 WFD assessment for the Middle Level, the waterbody in which the proposed reservoir will be located, identified possible deterioration risks to hydromorphological supporting elements in addition to geomorphological conditions. These are primarily due to potential risks associated with the loss of open watercourses, which could be mitigated by the realignment of some watercourses and/or alternative mitigation (e.g. in-channel improvements). However, further assessment would be required to confirm suitable WFD mitigation.

The assessment for the remaining two waterbodies identified possible deterioration risks to flow, water quality and biological status elements owing to the proposed abstractions. However,

Audus, Charles and Evans (2010). Environmental Good Practice on Site (Third Edition) (C692).

Murnane, Heap and Swain (2006). Control of water pollution from linear construction projects; Technical Guidance.

⁹ Environment Agency (2017). Protect groundwater and prevent groundwater pollution. Available at: <a href="https://www.gov.uk/government/publications/protect-groundwater-and-prevent-groundwater-pollution/protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-and-prevent-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-pollution/Protect-groundwater-groundwa

groundwater-and-prevent-groundwater-pollution. [Accessed on 30/07/2022].

The Environment Agency PPGs were formally withdrawn on 17 December 2015; however, they nonetheless provide clear and useful best practice advice. The archived PPGs are available at: https://www.environment-agency.gov.uk/business/topics/pollution/39083.aspx.

further assessment would be required to confirm the impact and to identify appropriate WFD mitigation.

A summary of the Level 2 WFD assessment is included in this section with detailed outputs presented in Appendix B.

Impacts on downstream waterbodies, including the Wash and Humber estuaries have not been considered at this stage. These will be considered further at gate three.

5.2.3.1 Middle Level

The following scheme elements are located within this catchment:

- Construction and operation of a new reservoir
- Construction and operation of new pipelines (FR to distribution)
- Construction and operation of a new WTW, set back from the watercourse.

A potential minor localised risk to the Middle Level was identified from the loss of open watercourses (mostly maintained field drains), and loss of up to 1.1% of the catchment for this waterbody due to the presence of the reservoir. This loss of catchment and watercourses could impact on habitat, flow and hydromorphology within this waterbody catchment. Further investigation is required to determine the full extent of these impacts.

At this stage it is assumed the construction of the pipeline will not involve in-channel modifications to the watercourse. Construction methods are likely to involve trenchless activities and therefore the impact on the watercourse catchment as a result of the transfer is expected to be negligible. The new WTW is anticipated to be set back from the watercourse with a likelihood to result in negligible construction impacts.

5.2.3.2 River Great Ouse (Roxton to Earith)

The following scheme elements are located within this catchment:

- Construction and operation of a new surface water abstraction
- Construction and operation of a new river intake structure
- Construction and operation of new pipelines (River Great Ouse to FR and FR to distribution).

A potential amber adverse risk to biological quality elements within the River Great Ouse (Roxton to Earith) was identified as a result of the new surface water abstraction. Abstraction rates are expected to reduce the flow volume and velocity which is likely to impede fish migration and cause deterioration to the aquatic habitat. A minor localised risk on the hydrological regime and to water quality is also anticipated due to the changes in flow (and therefore dilution of physico-chemicals downstream). Further investigation is required to determine the full extent of these impacts.

At this stage it is assumed the construction of the pipeline will not involve in-channel modifications to the watercourse. Construction methods are likely to involve trenchless activities and therefore the impact on the watercourse catchment as a result of the transfer is expected to be negligible.

5.2.3.3 Old Bedford River/River Delph (incl. the Hundred Foot Washes)

The following scheme elements are located within this catchment:

- Construction and operation of a new surface water abstraction
- Construction and operation of a new river intake structure
- Construction and operation of a new pipeline (River Delph to FR)

A potential amber adverse risk to the Old Bedford River/River Delph (including The Hundred Foot Washes) was identified as a result of the new surface water abstraction. The abstraction has been modelled using a level duration curve which indicates that levels will be reduced across the flow ranges, and particularly noticeable during low level periods (below Q90) where levels begin to drop off earlier than without the abstraction. The decrease in flow and velocity has the potential to increase sedimentation and decrease the levels of dissolved oxygen within the watercourse. Additionally, it could increase the concentration levels of specific pollutants already present in the waterbody, through reduced dilution. These impacts could lead to a deterioration in hydrological regime from the current High status. Preliminary hydro-ecological assessment suggests that this change is likely to impede fish migration and cause deterioration to existing habitat.

A minor localised risk on the hydrological regime and water quality are also anticipated, due to these changes in flow (and therefore dilution of physico-chemicals downstream). Further investigation is required to determine the full extent of the impacts.

At this stage it is assumed the construction of the pipeline will not involve in-channel modifications to a watercourse. Construction methods are likely to involve trenchless activities and therefore the impact on the watercourse catchment as a result of the transfer is expected to be negligible.

5.3 Summary

Table 5.5 provides a summary of all the WFD waterbodies screened in at Level 1 and 2 of the WFD Assessment.

Table 5.5: Summary of WFD waterbodies affected

Waterbody ID	Maximum Impact Score (Level 1)	Maximum Impact Score (Level 2)	Deterioration between status classes	Impediments to GES/GEP	Compromises waterbody objectives	Assists attainment of waterbody objectives
GB530503300300 – Great Ouse	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB205033000050 – Middle Level	3	1	No	No	No	No
GB205033000010 - Counter Drain (Sutton and Mepal IDB inc. Cranbrook Drain)	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB105033047921 - Ouse (Roxton to Earith)	3	2	Possible	Possible	Possible	No
GB205033000020 - Counter Drain (Manea and Welney IDB	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB205033000060 – Old Bedford River/River Delph (incl. the Hundred Foot Washes)	3	2	Possible	Possible	Possible	No
GB205033043375 – Old West River	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB105033042770 – Swavesey Drain	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB105033042680 – Bin Brook	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB205033047665 – Relief Channel	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB205033000030 - Counter Drain (Upwell and Outwell IDB)	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB40501G400400 – North West Norfolk Sandringham Sands (Groundwater body)	1	Level 2 assessment not required	N/A	N/A	N/A	N/A
GB40501G445700 – Cam and Ely Ouse Woburn Sands (Groundwater body)	1	Level 2 assessment not required	N/A	N/A	N/A	N/A

5.4 Risk of deterioration

A minor localised risk of deterioration to the Middle Level was identified from the loss of open watercourse and catchment due to the presence of the reservoir. This loss of catchment and watercourse could impact on habitat, flow and hydromorphology within this waterbody.

An amber adverse risk (potential risk of deterioration) to biological quality elements within the River Great Ouse (Roxton to Earith) was identified as a result of the new surface water abstraction. Abstraction rates are expected to reduce the flow volume and velocity. This change is likely to impede fish migration and cause deterioration to the habitat. A minor localised risk on the hydrological regime and water quality are also anticipated. Further investigation is required to determine the full extent of the impacts.

An amber adverse risk (potential risk of deterioration) to the Old Bedford River/River Delph (including The Hundred Foot Washes) was identified as a result of the new surface water abstraction. Abstraction rates are expected to reduce the water levels and flow velocity. This reduction in level could lead to a deterioration in hydrological regime from the current High status. Additionally, this change could impede fish migration and cause deterioration to the habitat. A minor localised risk on the hydrological regime and water quality are therefore anticipated. Further investigation is required to determine the full extent of the impacts.

At this stage of assessment, it is anticipated that suitable mitigation can be found for the risks identified above. However, it is possible that an exemption would need to be sought under Regulation 19 of the Water Environment (Water Framework Directive) (England & Wales) Regulations 2017, as a result of the scheme. Further investigation will be undertaken to determine the need and requirements for any potential exemption.

5.5 In-combination effects

A preliminary in-combination effects assessment has been undertaken as part of the gate two WFD report. The scheme is being considered as a major supply-side option in the Water Resources East (WRE) draft Regional Water Resource Plan and draft Water Resource Management Plans 2024 (dWRMP24). If the scheme is selected as a feasible option, it will be subject to further in-combination effects assessment with the other selected options, neighbouring water company plans and neighbouring regional plans, as well as inform assessments that accompany any development consent applications. Until the WRE Best Value Regional Plan has been developed, it is not known when the scheme would be implemented, and therefore which other developments it could act in-combination with.

There is the potential for in-combination effects on The Wash as a result of the FR and South Lincolnshire Reservoir schemes. Further work will be undertaken at gate three to determine the extent of potential in-combination effects on the Wash, following the outcome of ongoing hydrological assessments.

For the purpose of this assessment, only Local Development Frameworks, Development Consent Orders (DCOs) for Nationally Significant Infrastructure Projects, Hybrid Bills, Relevant Transport and Works Act Orders and relevant planning applications have been considered.

A search of committed developments in the vicinity of the scheme identified 62 developments within the search radius of 10km. Those with potential hydrological connectivity with the scheme are outlined in this section.

The search found that the Block Fen/Langwood Fen Master Plan, which was adopted as part of the Cambridgeshire and Peterborough Minerals and Waste Local Plan¹¹ has the potential to be impacted by the scheme. The Minerals and Waste Plan ensures sustainable minerals development has provision for sand, gravel and clay extraction and subsequent restoration in the Earith/Mepal area. The vision of the Block Fen/ Langwood Fen Master Plan is to improve recycling of construction waste materials, as well as creating wet grassland habitats and increasing flood risk management measures (as part of the Environment Agency's Cranbrook/ Counter Drain Strategy) adjacent to the River Delph.

The scheme has the potential to cause minor localised risks to the River Delph, as the abstraction from the River Delph is likely to lead to minor changes in water quality due to changes in flow volume and velocity. The Block Fen/ Langwood Fen allocation area is adjacent to the WTW infrastructure for the scheme, located in the Middle Level catchment. However, there are potential opportunities for the scheme to contribute to the creation of wetland habitats proposed in the Master Plan. This will be subject to further investigation at gate 3.

One major planning application (Planning application Ref. 21/00033/FUM) was identified as has the potential of impacting the same waterbody as the scheme. The development is to divert the existing IDB Main Drain to create a coherent, contiguous block of lowland wet grassland to add on to the existing Coveney Byall Fen under the Ouse Washes Habitat Creation Project. The development is located 2km south-east of the scheme. All existing field ditches within the development area (existing IDB) will be isolated from the new IDB by extensive clay dams. With the application of good practice construction methods from both the scheme and the development, it is anticipated that there would be a cumulative negligible risk to the affected watercourses. Rather, there may be a potential opportunity for the expansion or enhancement of the proposed wetland habitat. This will be subject to further investigation at gate 3.

Another major development was identified as having the potential to have cumulative effects on the River Great Ouse (Roxton to Earith) waterbody. The A428 Black Cat to Caxton Gibbet project is to upgrade the A428 between A1/A421 Black Cat Junction and A428/A1198 Caxton Gibbet Junction to high quality dual carriageway. Construction will include 19km of new Dual Carriageway, and Grade separated junctions. The construction of this project is expected to occur before the Fens reservoir scheme, and therefore no cumulative effects are anticipated.

Finally, six mineral allocation/waste projects have been identified in the same waterbodies as this scheme (see Table 5.6). The FR involves the installation of new pipelines, with associated below ground structures for crossings in these waterbodies. Each of the mineral extraction sites may require dewatering to allow extraction of sand and gravel. Therefore, for all six of these projects there is the potential for in-combination effects due to impacts on river flows and/or groundwater levels. However, the scale of works associated with the Fens reservoir scheme is likely to be small and temporary. Within suitable mitigation in place (such as the discharge of dewatering into local watercourses), is it anticipated that construction of the Fens reservoir scheme will not increase the risk of deterioration in the water bodies associated with these mineral allocation projects. Further information is required on each of the mineral allocation projects to confirm this.

¹¹ Cambridgeshire County Council and Peterborough City Council (2021). Cambridgeshire & Peterborough Minerals & Waste Plan. Available at: https://www.cambridgeshire.gov.uk/business/planning-and-development/planning-policy/adopted-minerals-and-waste-plan [Accessed 23/08/2022].

¹² East Cambridgeshire District Council, 2021. Planning application reference 21/00033/FUM. Available at: 21/00033/FUM | To Divert existing Internal Drainage Board Main drain to create a coherent contiguous block of lowland wet grassland to add on to the already created habitat at Coveney Byall Fen under the auspices of the Ouse Washes Habitat Creation Project | Land At Coveney Byall Fen Old Lynn Drove Coveney Cambridgeshire (eastcambs.gov.uk)

Table 5.6: Mineral and waste allocation projects in same water bodies as Fens scheme.

Project name	Description	Waterbody impacted
Bare Fen & West Fen, Willingham / Over	Potential sand and gravel extraction proposed at site across 240.5 hectares of land in the Bare and West fen area	GB105033042770 Swavesey Drain GB205033043375 Old West River
Chear Fen, Cottenham	Potential sand and gravel extraction proposed at site across 36 hectares of land in Chear Fen area.	GB205033043375 Old West River
Mitchell Hill Farm South, Cottenham	Potential sand and gravel at site across 114 hectares of land in Cottenham.	GB205033043375 Old West River
Land to the north of Stow Bardolph	Allocated as an Area of Search for silica sand extraction at two parcels of land covering approximately 31 and 30 hectares respectively.	GB205033047665 Relief Channel GB40501G400400: North West Norfolk Sandringham Sands
Land to the east of South Ructon	Allocated as an Area of Search for silica sand extraction across 47 hectares in South Ructon	GB40501G400400: North West Norfolk Sandringham Sands
Land to the north of Shouldham	Allocated area of search covers 815 hectares adjacent to areas of previous and current mineral workings and close to a sand and gravel allocation	GB40501G400400: North West Norfolk Sandringham Sands

5.6 Requirements to improve confidence level

The following requirements have been identified in the WFD assessment to improve confidence in the assessment of the surface water bodies:

- Ongoing refinement of the design in consultation with a WFD specialist.
- Land drainage and site drainage design to understand which watercourses will be diverted/realigned and which are lost.
- Request for further specific details of mitigation measures assessment and RBMP measures (including artificial/ heavily modified waterbody measures where relevant) from the Environment Agency to understand impact of the scheme and also to identify opportunities to improve the water body as part of the scheme.
- Update to WFD baseline data to include 2019 status in line with Cycle 3 2021-2027 RBMPs once published.
- It is recommended that a hydrology study is undertaken to understand the potential reduction in catchment area, impacts on flow and therefore biological status elements for the Middle Level
- Hydroecology studies are continued to understand potential impacts of reduced flow in the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) catchments on the hydrological regime and biological status elements.
- It is recommended that additional water quality monitoring (both continuous and spot) is carried out on the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) waterbodies. This data should then be used in further water quality analysis to determine the effects of the abstractions on river water quality and therefore biological quality elements.
- Development of WFD mitigation to offset impacts of the scheme.

5.7 Mitigation measures

Potential mitigation measures have been suggested for each individual waterbody and scheme activity based on the risk that it poses. Mitigation measures will be further considered as the design progresses.

Potential indicative mitigation measures considered to minimise potential impacts on waterbodies, include the following:

- Watercourses should be realigned around the reservoir footprint, where reasonably practicable, to re-provide lost habitat and flow into the main rivers.
- Channel modifications should seek to offer the change to incorporate environmental gain by widening drains to allow fringe vegetation to be retained or berms to be constructed, subjection to financial burdens during construction, land take and maintenance.
- Banks besides rivers and ditches within the Fens can support a range of species-rich wet
 and dry grassland as well as stands of sedges, reed and willow scrub, ideal for supporting
 the local ecology. Due to the close proximity of the scheme to the riparian zone, biodiversity
 conservation measures should be put in place during construction to ensure that the area
 isn't detrimentally impacted.
- Pipeline crossings should be constructed using trenchless techniques under watercourses.
- Intake structures should be fitted with appropriate fish / eel screens.
- Measures to avoid deterioration to hydromorphological determinants including how the flow and quantity of water changes over time.
- Industry good practice measures including Environment Agency PPG's¹³.
- Ensure all works carried out in accordance with guidance provided by the regulator, the Environment Agency, for working on/or near water¹⁴.
- Consideration of mitigation options in line with guidance provided in 'A Guide to Management Strategies and Mitigation Measures for Achieving Good Ecological Potential in Fenland Waterbodies¹⁵.

¹³ Although PPGs are considered to be outdated, they remain industry best practice and should be used as embedded mitigation where applicable.

¹⁴ Environment Agency, Protecting and improving the water environment. Water Framework Directive compliance of physical works on or near rivers.

Mayer, L, Moodie, I, Carson, C, Vines, K, Nunns, M, Hall, K, Redding, M, Sharman, P. & Bonney, S. (2017) Good Ecological Potential in Fenland Waterbodies: A Guide to Management Strategies and Mitigation Measures for achieving Good Ecological Potential in Fenland Waterbodies. Association of Drainage Authorities & Environment Agency.

6 Conclusions

6.1 Conclusion

For the assessment of the scheme, an informal WFD assessment has been developed to assess the potential for WFD risks as a result of the scheme, based on best available, but preliminary, scheme information at this early stage of design. The Level 1 assessment identified 13 WFD surface water and groundwater bodies, with three surface waterbodies requiring further assessment.

Level 2 WFD assessments were completed for the three surface waterbodies requiring further assessment. Precautionary WFD compliance risks were identified with all of the waterbodies assessed, as summarised in Table 6.1.

Table 6.1: Summary of Level 2 WFD assessment results

Waterbody name	Waterbody ID Maximum impact score (Level 2)		Potential impact score post mitigation (Level 2)	
Middle Level	GB205033000050	1 (minor localised)	1 (minor localised)	
Great Ouse (Roxton to Earith)	GB105033047921	2 (amber adverse)	2 (amber adverse)	
Old Bedford River/ River Delph (incl. the Hundred Foot Washes)	GB205033000060	2 (amber adverse)	2 (amber adverse)	

The risks identified with the surface waterbodies are primarily due to the loss of open watercourses and reductions in flow and associated deterioration of biological status elements and water quality. Mitigation is likely to adequately manage these risks, such as realignment/ diversion of the watercourses around the reservoir. However further investigation is required into the need to seek possible exemptions under Regulation 19 of the WFD Regulations 2017, as the scheme progresses to the next milestone, gate three.

6.2 Recommendations

Potential areas for further focus include the following:

- Consultation with the Environment Agency to present and discuss key WFD risks and proposed approach to improving certainty of assessments.
- Update to the WFD baseline data to include 2019 status in line with Cycle 3 2021-2027 RBMPs once published.
- Land drainage and site drainage design to determine which watercourses will be diverted/realigned and which would be lost.
- A further review of hydrology to improve understanding of the potential impacts a reduction in catchment area will have on flow and biological status elements for the Middle Level.
- Hydroecology studies are continued to understand potential impacts of reduced flow in the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) catchments on the hydrological regime and biological status elements.
- Additional water quality monitoring (both continuous and spot) should be undertaken on the River Great Ouse (Roxton to Earith) and Old Bedford River/River Delph (incl. the Hundred Foot Washes) waterbodies. This data should then be used in further water quality analyses to determine the effects of the abstractions on river water quality and therefore biological quality elements.
- Development of WFD mitigation to offset impacts of the scheme.
- Outlining further work and modelling required to demonstrate compliance at the next gate/milestone, gate three.

Appendices

A.	WFD Level 1 Assessment	25
B.	WFD Level 2 Assessment	26

A. WFD Level 1 Assessment

Scoring Key

Level 1 assessment	Impact	Impact Score	Description
	Very beneficial		Impacts that, taken on their own, have the potential to lead to the improvement in the ecological status or potential of a WFD quality element for the entire waterbody
Waterbody passes Level	Beneficial	-1	Impacts that, when taken on their own, have the potential to lead to a minor localised or temporary improvement that does not affect the overall WFD status of the waterbody or any quality elements
1 WFD assessment	No/minimal	0	No measurable change in the quality of the water environment or the ability for target WFD objectives to be achieved.
	Low	1	Impacts that, when taken on their own, have the potential to lead to a minor localised, short-term and fully reversible effects on one or more of the quality elements but would not result in the lowering of WFD status. Impacts would be very unlikely to prevent any target WFD objectives from being achieved.
Waterbody requires	Medium	2	Impacts that, when taken on their own, have the potential to lead to a widespread or prolonged effect on the quality of the water environment that may result in the temporary reduction in

						Waterbody requires level 2 WFD assessment	Medium	2	Impacts that, when taken WFD status. Impacts ha	on their own, have the pote we the potential to prevent tar	ntial to lead to a widespread or get WFD objectives from bein	prolonged effect on the quantity of the quantity of achieved.	ality of the water environr	nent that may result in the t	lemporary reduction in			
Component	Activity	Construction, Operation or	Assumptions / Mitigations	Comments	Score													
Below ground	Construction/repair of new tunnels and conduits	Decommissioning Construction	assumed to be in place Tunnels and conduits will be constructed such that they will not form a preferential pathway for the flow of groundwater	The specific below ground activities should affect the groundwater only and not surface water CJN: depending on construction method, site runoff will impact	1	1	gB205033000050	GB205033000010	1	N/A	R/A	N/A	N/A	N/A	GB205033047665	gB205033000030	1	1
Below ground	Construction of below ground structures (shaft/retaining wall) with associated dewatering, with no sensitive groundwater feature within 500m	Construction	Risk assessments will be undertaken for excavation works and dewatering to ensure no adverse impact on watercourses, wetland habitats or abstractions. Dewatering discharge will be treated before discharge.	(pipeline) should affect the groundwater only and not surface	1	1	1	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	Presence of new underground structure (tunne/shaft/retaining wall), with no sensitive groundwater feature within 500m	Operation	Land drainage will be provided on the upgradient side of the scheme such that the will not cause an increase in groundwater flooding risk. This drainage will be discharged into local watercourses to maintain flow. Risk assessments will be undertaken for	/ The specific below ground activities (pipeline) should affect the groundwater only and not surface wate	1	1	1	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	Construction of below ground structures (shaft/retaining wall) with associated dewatering, within 500m of a sensitive groundwater feature	Construction	excavation works and dewatering to ensure no adverse impact on watercourses, wetlan habitats or abstractions. If impact likely appropriate mitigation to be put in place Dewatering discharge will be treated before discharce. Land drainage will be provided on the	groundwater only and not surface	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	sensitive groundwater feature	Operation	Land orainage will be provided on the upgradient side of the scheme such that the will not cause an increase in groundwater flooding risk. This drainage will be discharged into local watercourses to maintain flow.	y The specific below ground activities (pipeline) should affect the groundwater only and not surface wate	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	Construction of new cutting with external dewatering with <u>no</u> sensitive groundwater feature within 500m	Construction	N/A	(pipeline) should affect the groundwater only and not surface	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	Construction of new cutting with external dewatering within 500m of a sensitive groundwater feature	Construction	Nisk assessments will be undertaken for excavation works and dewatering to ensure no adverse impact on watercourses, wetland habitats or abstractions. If impact likely appropriate mitigation to be put in place Dewatering discharge will be treated before	groundwater only and not surface	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Below ground	Construction of new culvert	Construction	Application preconting were sensor were working in the channels of or adjacent to watercourses, providing new cukerts and or extending cukerts, if required, to appropriately manage flood risk and the potential for deposition of sit or release of other forms of suspended matter or poliution within the suspended matter reasures will be in line with the requirement set out within the Environment Agency's PPGs (PPGs: Ceneral Guide to Prevention- Poliution, PPGs: Works and maintenance of or near water: and PPGS2 Martenance of	The specific below ground activities should affect the groundwater only and not surface water CJN: depending on construction method, site runoff will impact surface waters	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	t Knowledge exchange or education programme	Operation	N/A The impact of the scheme will be felt in the	N/A	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	Changes to land management practices to reduce to pesticides, nutrients, sediment or flooding relating to a groundwater source	Operation	Ine impact of the scheme will be focused around the SPZ1 and 2 areas of the groundwater source of interest. These schemes are smaller scale than surface water. An immediate change may be seen in the	₩A	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	Changes to land management practices to reduce t pesticides, nutrients, sediment or flooding relating to a surface water source	Operation	An immediate change may be seen in the water quality downstream of the changes to land management. It is assumed there is a high level of engagement from those relevan for reducing the parameter of interest.	N/A	-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	t River restoration - construction phase	Construction	There may be minor short term impacts during the construction phase River restorations will be selected in line with	methods used near rivers to protect habitat. Assume suitable exclusion zones around water bodies will be set mitigating risk to watercourses.	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	River restoration - after construction	Operation	WINEP criteria. The restorations are to	N/A	-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	t Flow augmentation and licensing t Terrestrial habitat creation/management - creation	Operation	improve hydrological flows in the local area N/A	N/A	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	tt Terrestrial habitat creation/management - creation Terrestrial habitat creation/management -		N/A N/A	N/A N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	Natural water retention measures (including NFM	Operation			-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	and wetland creation) - construction	Construction	N/A	N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	and wetland creation)	Operation	N/A	N/A	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	t Fisheries management	Operation	Assumed to be in place due to WINEP drive or similar criteria to improve ecological statu of the river.		-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	construction	Construction	N/A	avoid flooding during construction phase . May also be required to attenuate and treat site runoff prior to	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Catchment managemen	Sustainable Urban Drainage Systems (SUDS) - after construction	Operation	Assumed to presented as an option at local scale. This assumes a short term benefit to WFD a	IN A	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Catchment managemen	Integrated catchment management	Operation	imposed usage reduction should allow for recovery in the river or aquifer which may improve WFD status from pre restriction status. Appropriate precautions will be taken when	N/A	-2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Culvert	COVER	Construction	working in the channels of or adjacent to watercourses, providing new cluents and or extending culverts, if required, to appropriately manage flood risk and the potential for deposition of sit or release of other forms of suspended material or pollution within the water column. If measures will be in line with the requiremen set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention Orbitotion; PPGS: Works and maintenance in or near water: and PPG23 Maintenance of districtions care within.	N/A s	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Culvert	Presence of new culvert, in headwaters or on drainage ditches	Operation	Appropriate improvements to local habitat to offset the presence of the culvert	N/A	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Culvert Culvert	Presence of new culvert mid or lower catchment	Operation	No assumed mitigations	N/A N/A	2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Culvert	Presence of new inverted siphon or drop inlet culver Removal of significant in channel watercourse	Decommissioning	No assumed mitigations No assumed mitigations	N/A	-2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	structure (such as impassable weir)		-															
Culvert	watercourse structure High volume discharge of water with a quality	Decommissioning	No assumed mitigations	N/A	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Discharge	Water body High volume discharge of water with a quality	Operation Operation	No assumed mitigations No assumed mitigations	N/A	-2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
-	water body Low volume discharge of water with a quality		-		3													
Discharge	element of the same or higher WFD status than the receiving water body Low volume discharge of water with a quality		No assumed mitigations	NA	-1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Discharge	element of a lower WFD status than the receiving water body Low volume discharge of water with a quality	Operation	No assumed mitigations	N/A	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Discharge		Operation	No assumed mitigations	N/A	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

	High volume discharge of water with a quality																	
Discharge	element of the same WFD status as the receiving water body	Operation	No assumed mitigations	N/A	1	N/A												
Discharge Discharge	New WTW discharge to watercourse	Operation Operation	No assumed mitigations No assumed mitigations	N/A N/A	1 2	N/A N/A												
Discharge	New discharge of highly saline water to a coastal or		No assumed mitigations	N/A	3	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A						
	transitional waterbody New discharge of highly saline water to a surface	Operation		N/A	2	N/A	NI/A	N/A	N/A	N/A	N/A							
Discharge	waterbody or groundwater	Operation	No assumed mitigations Appropriate precautions will be taken when		- J	N/A	N/A	IN/A	N/A									
			working in the channels of watercourses, to appropriately manage flood risk and the															
	Construction of a new outfall structure to a		potential for deposition of silt or release of other forms of suspended material or															
Discharge	watercourse, coastal waters, transitional waters or reservoir	Construction	pollution within the water column. All measures will be in line with the requirement	WA	1	N/A												
	16361 VOII		set out within the Environment Agency's															
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
Discharge	Cessation of existing discharge to a watercourse	Construction	or near water) No assumed mitigations Appropriate precautions will be taken when	N/A	2	N/A												
			working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
Discharge	Maintenance and use of river, coastal or transitional water outfall	Operation	other forms of suspended material or pollution within the water column. All	N/A	0	N/A												
	water outrain		measures will be in line with the requirement set out within the Environment Agency's	ls														
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in	of														
Groundwater	Construction of a new abstraction borehole	Construction	or near water) No assumed mitigations	N/A	0	N/A												
	headworks and associated infrastructure	Construction	Work will be carried out under appropriate	1999	0	N/A												
		Construction	consent from the EA Work will be carried out under appropriate		0	N/A												
Groundwater	Maintenance and use of abstraction borehole	Operation	consent from the EA No assumed mitigations	N/A	0	N/A												
Groundwater	infrastructure	Ореганоп	Appropriate precautions will be taken when	iv.	0	N/A	N/A	IVA	IWA	IVA	IV/A	10/6	11/7	IVA	10/0	N/A	N/A	19/0
			working in the channels of or adjacent to watercourses, to appropriately manage floor															
			risk and the potential for deposition of silt or release of other forms of suspended materia															
Habitat	Creation of significant areas of riparian habitats	Construction	or pollution within the water column. All measures will be in line with the requirement	IN/A	-2	N/A												
			set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention of															
			Pollution; PPG5: Works and maintenance in	1														
			Appropriate precautions will be taken when working in the channels of or adjacent to															
			watercourses, to appropriately manage floor risk and the potential for deposition of silt or															
Habitat	Minor habitat creation	Construction	release of other forms of suspended material or pollution within the water column. All		-1	N/A												
			measures will be in line with the requirement set out within the Environment Agency's															
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
			Appropriate precautions will be taken when	1														
			working in the channels of or adjacent to watercourses, to appropriately manage floor	,														
			risk and the potential for deposition of silt or release of other forms of suspended materia															
Habitat	Daylighting of existing culverts	Construction	or pollution within the water column. All	N/A	-1	N/A												
			measures will be in line with the requirement set out within the Environment Agency's															
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
			Appropriate precautions will be taken when working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
	Channel realignment with natural bed substrate and		other forms of suspended material or															
Habitat	good riparian connections	Operation	pollution within the water column. All measures will be in line with the requirement	N/A Is	-1	N/A												
			set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention of	of														
			Pollution; PPG5: Works and maintenance in or near water) Appropriate precautions will be taken when															
			working in the channels of watercourses, to appropriately manage flood risk and the															
			potential for deposition of silt or release of															
Habitat	Channel realignment with artificial banks/base	Operation	other forms of suspended material or pollution within the water column. All	N/A	1	N/A												
			measures will be in line with the requirement set out within the Environment Agency's															
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
			Appropriate precautions will be taken when working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
			other forms of suspended material or															
Intake	Construction or modification of a new pumping station and/or intake from raw water (river or coastal	Construction	pollution within the water column. All measures will be in line with the requirement	New inlet structure will impact existing water body.	1	N/A	N/A	N/A	1	N/A	1	N/A						
	waters)		PPGs (PPG1: General Guide to Prevention	of														
			Pollution; PPG5: Works and maintenance in or near water).	1														
			CJN: New inlet structure will impact existing Appropriate precautions will be taken when															
			working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
Intake	Maintenance and use of river intakes	Operation	other forms of suspended material or pollution within the water column. All	N/A	1	N/A	N/A	N/A	1	N/A	1	N/A						
			measures will be in line with the requirement set out within the Environment Agency's	ts														
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
			Appropriate precautions will be taken when															
			working in the channels of watercourses, to appropriately manage flood risk and the															
			potential for deposition of silt or release of other forms of suspended material or															
Intake	Maintenance and use of coastal intakes	Operation	pollution within the water column. All measures will be in line with the requirement	N/A Is	1	N/A												
			set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention of															
			Pollution; PPG5: Works and maintenance in															
Licence	Use of existing ground and surface water abstraction licences, within licence conditions and	Operation	No assumed mitigations	N/A	0	N/A												
	recent abstraction patterns Use of existing surface water and groundwater																	
Licence	abstraction licences, within existing licence conditions but outside of the recent actual rates	Operation	No assumed mitigations	N/A	2	N/A												
Licence	Emergency or drought use of existing surface water or groundwater abstraction outside of licence	Operation	No assumed mitigations	N/A	2	N/A												
Licence		Operation	No assumed mitigations	N/A	3	N/A	N/A	N/A	3	N/A	3	N/A						
Licence	New or increased groundwater abstraction	Operation	No assumed mitigations	N/A N/A	3	N/A												
Licence	licence Reduction of coastal or transitional waterbody	Operation	No assumed mitigations	N/A	3	N/A												
Licence	abstraction licence	Operation	No assumed mitigations	N/A	-1	N/A												
Licence	Increase of coastal or transitional waterbody abstraction licence	Operation	No assumed mitigations	N/A	2	N/A												
Pipelines	Trenching and laying of pipe lines within the interfluves of a catchment (no watercourse	Construction	Assumed that bedding material for pipelines will be constructed such that they do not for preferential pathways for groundwater flow.	Presume trenching and laying will be	0	N/A												
pomos	crossings)		preferential pathways for groundwater flow.	used for most lengths of pipe.	-	IVA	IVA	IVA	10/0	1976	IVA	IVA	177	1976	WA.	IVA	17/5	IVA

			Assumed that bedding material for pipelines will be constructed such that they do not form	n														
			preferential pathways for groundwater flow. Assumed that watercourse crossings will be	Only trenchless activities are														
Pipelines	Trenching and laying of pipe lines involving watercourse crossings	Construction	carried out using directional drilling or if the	designed when there is a water	1	N/A												
			watercourse needs to be temporarily diverted, appropriate measures will be in	crossing														
			place to protect ecology and watercourse wi be returned back to its natural state.															
Pipelines	Trenching and laying of pipe lines involving large watercourse crossings with in channel modifications	Construction	Flood risk assessment will be carried out to ensure that new in channel features will not		2	N/A												
Pipelines	Maintenance of pipelines	Operation	adversely impact on flood risk No assumed mitigations	crossing N/A	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipelines	Draining of pipelines for maintenance	Operation	If water is drained to local watercourse, this will be short term and temporary impacts only	, N/A	1	1	1	1	1	1	1	1	1	1	1	1	1	1
				Surveys not yet completed, so have														
Pipelines	removal / decommissioning of existing pipeline (no watercourse crossings)	Decommissioning	No assumed mitigations	presumed construction work to remove existing infrastructure is	0	N/A												
			Appropriate precautions will be taken when	possible. Included for worst-case scenario.														
			working in the channels of watercourses, to appropriately manage flood risk and the															
			potential for deposition of silt or release of other forms of suspended material or	Surveys not yet completed, so have presumed construction work to														
Pipelines	removal / decommissioning of existing pipeline (involving watercourse crossings)	Decommissioning	pollution within the water column. All measures will be in line with the requirement	remove existing infrastructure is	0	N/A												
			set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention of	scenario.														
			Pollution; PPG5: Works and maintenance in															
Pipelines	New above ground pipelines (crossing watercourse)	Construction	N/A	N/A	2	N/A												
Pipelines	New above ground pipelines (not crossing watercourse)	Construction	N/A	N/A	0	N/A												
Pipelines	Temporary pipelines to support network upgrades	Operation	N/A	N/A	1	N/A												
Reservoir	or changes Construction of reservoir (set back from	Construction	No assumed mitigations	N/A	0	N/A	N/A	0	N/A									
	watercourse)		Appropriate precautions will be taken when working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
Reservoir	Construction of new storage reservoir (in line/next to	Construction	other forms of suspended material or	N/A	2	N/A	2	N/A										
Reservoir	watercourse - within 500m)	Construction	pollution within the water column. All measures will be in line with the requirement		3	N/A	3	N/A	IVA	IVA	IV/A	IV/A	IV/A	IV/A	IV/A	IV/A	N/A	IVA
			set out within the Environment Agency's PPGs (PPG1: General Guide to Prevention of															
			Pollution; PPG5: Works and maintenance in Appropriate precautions will be taken when															
			working in the channels of watercourses, to appropriately manage flood risk and the															
			potential for deposition of silt or release of other forms of suspended material or															
Reservoir	Modification of an existing storage reservoir	Construction	pollution within the water column. All measures will be in line with the requirement	N/A	3	N/A												
			set out within the Environment Agency's															
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in	*														
			Appropriate precautions will be taken when working in the channels of watercourses, to															
			appropriately manage flood risk and the potential for deposition of silt or release of															
Reservoir	Presence of new or modified existing storage	Operation	other forms of suspended material or pollution within the water column. All	N/A	3	N/A	3	N/A										
	reservoir		measures will be in line with the requirement set out within the Environment Agency's	S														
			PPGs (PPG1: General Guide to Prevention of Pollution; PPG5: Works and maintenance in															
			Appropriate precautions will be taken when															
			working close to channels of watercourses, to appropriately manage flood risk and the															
Reservoir	Modification of an existing service reservoir adjacer	nt Construction	potential for discharge of chlorinated water into the watercourse. All measures will be in	N/A	1	N/A												
Reservoir	in close proximity to watercourse	Construction	line with the requirements set out within the Environment Agency's PPGs (PPG1:	IVA	'	IV/A	IV/A	IV/A	IV/A	IVA	IV/A	IV/A	IV/A	IV/A	IV/A	IV/A	N/A	IV/A
			General Guide to Prevention of Pollution; PPG5: Works and maintenance in or near															
			Appropriate precautions will be taken when															
			working close to channels of watercourses, to appropriately manage flood risk and the															
Reservoir	Presence of new reservoir or modified existing	Operation	potential for discharge of chlorinated water into the watercourse. All measures will be in	N/A	1	N/A												
	service reservoir in close proximity to watercourse		line with the requirements set out within the Environment Agency's PPGs (PPG1:															
			General Guide to Prevention of Pollution; PPG5: Works and maintenance in or near															
Reservoir	Modification of an existing service reservoir not in	Construction	No assumed mitigations	NA	0	N/A	N/A	0	N/A									
	close proximity to watercourse Presence of new reservoir or modified existing service reservoir not in close proximity to	Operation		NA	0	N/A												
	watercourse Floating or constructed shade for the reservoir to		No assumed mitigations		-													
Reservoir Reservoir	reduce evaporation Floating or constructed shade for the reservoir to	Operation	N/A	N/A N/A	2	N/A N/A												
Nesei (Oll	reduce evaporation	CONSTRUCTION	TVA	IVA	,	IN/A	IN/A	N/A	IN/A	IV/A	IN/A	IN/A	IN/A	IV/A	IN/A	IN/A	N/A	IN/A
Transfer agreement	New or continuation of contractual agreement between companies to continue providing transfer	Operation	N/A	NA	0	N/A												
	with no change to abstraction licence associated Contractual agreement between companies to																	
Transfer agreement	continue providing transfer with decrease in	Operation	N/A	N/A	-1	N/A												
	abstraction licence associated Contractual agreement between companies to																	
Transfer agreement	continue providing transfer with increase in abstraction licence associated	Operation	N/A	NA	2	N/A												
Usage changes and			This assumes a short term benefit to WFD a imposed usage reduction should allow for															
abstraction management		Operation	recovery in the river or aquifer which may improve WFD status from pre restriction	N/A	-1	N/A												
Usage changes and	drought orders to business and/or household Communication with business or households to	Operation	status.	N/A	0	N/A												
abstraction management	reduce water use in times of drought		For treated water transfer, there is likely to															
Usage changes and		Operation	be no WFD impact. For raw water transfer this may have a short term impact changing			N/A	N1/0	N/A	N/A	NI/A	N1/0	51/5	N/A	NI/A	NI/A	A1/A	N/A	A1/A
abstraction management		Operation	local habitats at either end of the transfer should the raw water be transferred from	N/A	,	N/A												
	Reduce transfer of water between water companies		river to river. Any changes to transfers are assumed to be in place in the short term															
	abstractions of vulnerable sources in times of drought and using more resilient sources more		This assumes a single abstraction															
Usage changes and abstraction management	frequently. This could include switching from GW to surface water or reservoir sources. This could	Operation	management event is a short term activity, with abstraction changes occurring regularly	N/A	1	N/A												
	include resting some sources to all for recovery of supply.		to allow for recovery.															
Usage changes and		Operation	This assumes water being tankered is treater and will be input into the network at either	i a	_	N/A	N1/A	NI/A	AL/A	NI/A	11/0	NI/A	N/A	NI/A	AL/A	A1/A	N/A	A1/A
abstraction management	Tankering treated water between WRZ	Operation	treatment works or into a main. This should not have any WFD impact.	NA	0	N/A												
Usage changes and		Operation	Assumes use of water would not be for drinking unless sent to WTW for full	N/A	1	N/A												
NACTOR!	Tankering raw water or treated effluent Modification of an existing WTW or pumping station	Construction	treatment. No assumed mitigations	N/A	0	N/A												
WTW	Construction of a new WTW or pumping station	Construction	No assumed mitigations	N/A	0	N/A	0	N/A										
	relating to treated water Construction of a new WTW or pumping station	Construction	No assumed mitigations	NA	1	N/A												
	relating to raw water																	
WTW	Maintenance and use of pumping stations and WTV	V Operation	No assumed mitigations	N/A	0	N/A	0	N/A										
-																		

| wtw | Removal of existing WTW and associated discharge | | repropriate precautions will be taken when
working in the channels of watercurses, to
appropriately manage flood risk and the
potential for deposition of sit for release of
other forms of suspended material or
pollution within the water column.
In measures will be in line with the requirement
set out within the Enfortment Agency's
PPGs (PPG): General Guide to Prevention or
Pollution, PPGs Works and maintenance in | N/A
S | -1 | N/A |
|-----|--|--------------|---|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| WTW | Small desalination temporary unit | Operation | or near water) Assumes no construction is required below ground. Unit would be temporary with no impact on WFD | | 0 | N/A |
| WTW | Construction or modification of a desalination plant | Construction | No assumed mitigations | N/A | 1 | N/A |
| WTW | Maintenance and use of desalination plant | Operation | No assumed mitigations | N/A | 0 | N/A |

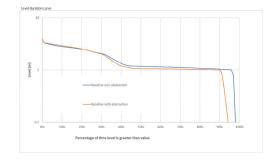
Impacted Waterbody ID	Impacted Waterbody Name	Waterbody type	Overall waterbody Classification	Overall waterbody Objective	Number of activities assessed	Count of activities scoring major benefit score (-2)	Count of activities scoring minor benefit score (-1)	Count of activities scoring minimal impact score (0)	Count of activities scoring minor local impact score (1)	Count of activities scoring medium impact score (2)	Count of activities scoring high impact score (3)	Level 1 max score	Level 1 mean score	Carry through to level 2 assessment?
GB530503300300	GREAT OUSE	TransitionalWater	Poor in 2015	Moderate by 2021	6	0	0	1	5	0	0	1	0.83	NO
GB205033000050	Middle Level	River	Moderate in 2015	Good by 2027	10	0	0	3	5	0	2	3	1.10	YES
GB205033000010	Counter Drain (Sutton and Mepal IDB incl. Cranbrook Drain)	River	Moderate in 2015	Good by 2027	8	0	0	3	5	0	0	1	0.63	NO
GB105033047921	Ouse (Roxton to Earith)	River	Moderate in 2015	Moderate by 2015	7	0	0	1	5	0	1	3	1.14	YES
GB205033000020	Counter Drain (Manea and Welney IDB)	River	Moderate in 2015	Good by 2027	3	0	0	1	2	0	0	1	0.67	NO
GB205033000060	Old Bedford River / River Delph (inc The Hundred Foot Washes)	River	Moderate in 2015	Good by 2027	6	0	0	1	4	0	1	3	1.17	YES
GB205033043375	Old West River	River	Moderate in 2015	Moderate by 2015	3	0	0	1	2	0	0	1	0.67	NO
GB105033042770	Swavesey Drain	River	Poor in 2015	Poor by 2015	3	0	0	1	2	0	0	1	0.67	NO
GB105033042680	Bin Brook	River	Moderate in 2015	Good by 2027	3	0	0	1	2	0	0	1	0.67	NO
GB205033047665	Relief Channel	River	Moderate in 2015	Moderate by 2015	4	0	0	1	3	0	0	1	0.75	NO
GB205033000030	Counter Drain (Upwell and Outwell IDB)	River	Moderate in 2015	Moderate by 2015	4	0	0	1	3	0	0	1	0.75	NO
GB40501G400400	North west Norfolk Sandringham Sands	GroundWaterBody	Good in 2015	Good by 2015	4	0	0	1	3	0	0	1	0.75	NO
GB40501G445700	Cam and Ely Ouse Woburn Sands	GroundWaterBody	Poor in 2015	Good by 2019	4	0	0	1	3	0	0	1	0.75	NO

B. WFD Level 2 Assessment

Waterbody ID	Level 2 sheet created?	Waterbody Name	Maximum Level 2 Impact score	Confidence in WFD data	Confidence in option design	Requirements to improve confidence - add text	Mitigation measures - add text	Post mitigation impact score	Deterioration between status classes	Impediments to Good Ecological Status (GES) or Good Ecological Potential (GEP)	Compromises water body objectives	Assists attainment of water body objectives	Further comments
GB205033000050	TRUE	Middle Level	1	Low	Low	1) On-poing refinement of the design. 2) Land dranage and site drainage design to understand which watercourses will be diverted/realigned and which are lost. 3) Hydrology study to understand potential reduction in cuto	Any large watercourses should be realigned to re- provide lost habitat and flow into the main rivers. Further details on mitigation measures assessment from EA to understand impact of the scheme and also to identify opportunities to improve the water body as par of the scheme.	'	No	No	No	No	
GB105033047921	TRUE	Ouse (Roxton to Earith)	2	Low	Low	i) On-going refinement of the design. 2) Hydraulic modelling to understand the impact on flow and velocity as a result of the abstraction. 3) Water quality modelling and monitoring (both continuous and spot sampling) to understand the impact of changes in water quality and therefore biology due to the abstraction. 4) Hydraulic modelling is required to determine the impact of abstraction of anowersteam flow regime abstraction moderates and in order to a straction of anowersteam flow regime. 5) Section of the control of the	Implementation of best practice mitigation measures for the intake structure. Further water quality modellin (both continuous and post sampling) is required to determine the extent of impacts within this catchment. This will help determine appropriate mitigation measures.		Possible	Possible	Possible		Assumes pipeline crossings are trenchless under large watercourses
GB205033000060	TRUE	Old Bedford River / River Delph (inc The Hundred Foot Washes)		Low	Low	1) On-going refinement of the design. 2) Hydraulic modelling to understand the impact on flow and velocity as a result of the abstraction. 3) Water quality modelling and monitoring (both continuous and spot sampling) to understand the impact of changes in water quality and threefore biology due to the abstraction. 4) Hydraulic modelling is required to determine the impact of the continuous and spot sampling to the properties of the properti	Implementation of best practice mitigation measures for the intake structure. Further water quality modellin (both continuous and post pampling) is required to determine the extent of impacts within this catchment. This will help determine appropriate mitigation measures.	,	Possible	Possible	Possible		Assumes pipeline crossings are trenchless under large watercourses

Strategic Resource Option surface water assessment for: Fens Reservoir - Preferred Option Is a groundwater assessment required? Yes

Waterbody ID	Waterbody name	Waterbody type	Maximum Impact s level 1	score Maximum Impact score level 2	Maximum post mitigation impact score level 2	Deterioration between status classes	Impediments to GES/GEP	Compromises water body objectives	Assists attainment of water body objectives
GB530503300300	GREAT OUSE	TransitionalWater	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required
GB205033000050	Middle Level	River	3	1	1	No	No	No	No
GB205033000010	Counter Drain (Sutton and Mepal IDB incl. Cranbrook Drain)	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	required	Level 2 assessment not required
GB105033047921	Ouse (Roxton to Earith)	River	3	2	2	Possible	Possible	Possible	No
GB205033000020	Counter Drain (Manea and Welney IDB)	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required
GB205033000060	Old Bedford River / River Delph (inc The Hundred Foot Washes)	River	3	2	2	Possible	Possible	Possible	No
GB205033043375	Old West River	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	required	required	Level 2 assessment not required
GB105033042770	Swavesey Drain	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	required	required	Level 2 assessment not required
GB105033042680	Bin Brook	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	required	required	Level 2 assessment not required
GB205033047665	Relief Channel	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required
GB205033000030	Counter Drain (Upwell and Outwell IDB)	River	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required
GB40501G400400	North west Norfolk Sandringham Sands	GroundWaterBody	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	required	required	Level 2 assessment not required
GB40501G445700	Cam and Ely Ouse Woburn Sands	GroundWaterBody	1	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required	Level 2 assessment not required

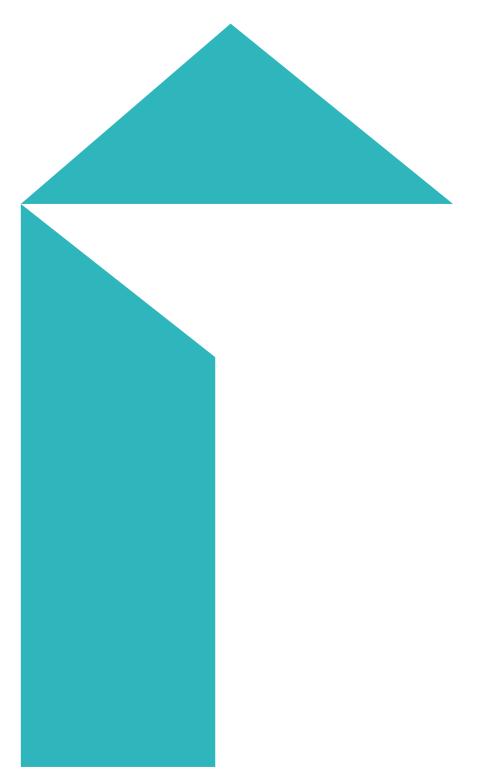

New pipe lines in vivining watercares conscipe with norin demand mudifications. Maintenance of pipe loss (publicage and an artificial properties). Maintenance of pipe loss (publicage and an artificial properties).	ater abstraction
Constitution Operation of Operation	Operation Operation
According to the production of processing of the processing	Changes to water body hydromorphology loading Change in water quality due to new to changes in heir processes and habitats on deposition upstream and downstream water body water body
Society of the control of the contro	
	· · · · · · · · · · · · · · · · · · ·
pubments x x x x x x x x x x x x x x x x x x x	, , ,
Does for comparation of the properties of the pr	x x
Admited dreaking compliance The proposition of the	of Changes in Changes to water body Comment of the Impact of Change to water body Comment of the Impact of Change of Changes in yellowoopleagy leading to changes in short or on each element dearn on each element dearn of the Changes and Indiator (command dearn of the Changes and Indiator (command dearn of the Changes and Indiator (command dearn of the Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of Changes) and Indiator (comment dearn of the Impact of the Impact of Changes) and Indiato
Code of the final interval of the code of	Landvolvely read allows Charges inference and velocity and all allows consistent of the substitution of the substitution parameters and the substitution of the substi
Section of the contract of the	
Legent Goods 295 To large Control 295 To large Cont	mentation due to Petential increased sedimentation due to to have significant effect abstraction and expected to have significant effect abstraction and expected to have significant effect on the hydrological regime. No
Moderate in Security 2015 Security 2017 In Security 2017	
Hybrit 275 Coolly 275 to low low low low low low low low low lo	
Internal Principle Control C	anticipated as a result of No measurable effects anticipated as a result of Minor effects anticipated as a result
The contract of the contract o	changes in the hydromorphology on the physico- chowings:
Address and All St. Moderate 3/25 Moderate 3/25 1 to too No. No. No. No. No. No. No. No. No. N	Usmas .
Application	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
05 efficits (0001)205 (2004 0 fine 10 fin 0 fin	No measurable effects anticipated
(ACCOV) (ACCOV	abstraction on chemicals
19 10 10 10 10 10 10 10 10 10 10 10 10 10	

econ o op o ne page							Does the	component comply with WFD	objectives		
RNACPHAMMAM Id Relevant WFD Quality Euro	nt (RNAC) / Measure category 1 (PoM) Category (RNAC)/Lead organisation (PoM)	Name of Continues of State (Table State)	Is this measure potential impacted by the scheme? (Yes/No)	impad sore assesment	Dataonfidence	agnoor	Assists attainment of water body objectives	Impediment to GES/GEP	Compromi ses water body objectives	Post mitigation impact score (- 2 to 3)	Newor increased surface water abstraction
Beacons for Not Achieving Good (RN 479142 Mitigation Measures Assesse	Recreation Recreation	Physical modifications	Yes	1	Low	Low	No	No	No	1	New intake structure will add another physical modification, however this will be minor and with
Beasons for Not Achieving Good (8M 479143 Mitigation Measures Assess	nent Local and Central Government	Physical modifications	Yes	1	Low	Low	No	No	No	1	mitigation is unlikely to have an impact other projects to improve this pressure
Reasons for Not Achieving Good (RN 486697 Phosphate	Agriculture and rural land management	Pollution from rural areas	No								
Reasons for Not Achieving Good (RN 486696 Phosphate	Water Industry	Pollution from waste water	No								
Steasons for Not Achieving Good (RW 486698 Phosphate	Agriculture and rural land management	Pollution from rural areas	No								

coring Key			
Level 1 assessment	Impact	Impact Score	Description
	Very beneficial	-2	Impacts that, taken on their own, have the potential to lead to the improvement in the ecological status or potential of a WFD quality element for the entire weterbody
Waterbody passes Level 1 WFD assessment	Servel icial	4	Impacts that, when taken on their own, have the potential to lead to a minor localised or temporary improvement that does not affect the overall WFD status of the waterbody or any quality elements.
wanted paraterial in Danishins	No/minimal	0	No measurable change in the quality of the water environment or the ability for target WFD objectives to be achieved.
	Low	1	reversible of fects on one or more of the quality elements but would not result in the lowering of WFD
Waterbody requires level 2 WFD assessment	Medium	2	inspace that, which index on train outs, lake a train potential to laid to a documents of pictologist at all can use quality of the water environment that may result in the temporary reduction in WFD status. Impacts have the objected to concept strong WFD objections from belong achieved.
Water Dog Telephone William Control of the Control	Heb		deterioration of WED states. Potential for high impact on requestion tenal WED objectives from being

0.4	Fons Reservoir - Preferred Option	Go to RMAG/PoM table at bottom of the page	1																				
Waterholy ID	GB205033000060	CO D HONE OF THE SEC AT LOCKON OF THE PAGE						Arthity				New or increased surface water abstraction				Manager Services Services	se crossings with no in channel modific	art con		Molecuscosistes	lines (including draining pipeline)		
Waterbody name	Old Bedford River / River Delph (inc The Hur	dred Foot Washes)	1					Construction, Operation or Decommissioning as	rtivity			New or increased surface water abstraction				New pipe lines involving waterco.	Construction	anons	Operation	Maintenance of pipe	incs (including draining pipeline)		
Waterbody type	Rver	acci rost wastes,	-					Potential Impacts of asset (following considerar embedded mitigation)		Operation	Operation	Operation	Operation Changes to water body hydromorphology leading to changes in river processes and	Operation Change in water quality due to new or changes to existing	Construction and operation Changes to water body hydromorphology leading to changes in river processes and	Changes in flow velocity and volume		Construction	Changes in flow velocity and volume (increase		Operation	Operation Change in water quality due to new or changes to existing discharge of surface water into	
Hydromorphological designation	Artificial	Action: Obtain HMWB measures information from the Environment Agency to add to the RNAG/PoM table.						Biological Effects		Changes to channel footprint	Changes in flow velocity and volume (increase or decrease)	Changes in sedimentation deposition	habitats upstream and downstream	discharge of surface water into surface water body	habitats upstream and downstream J	(increase or decrease)	Changes in sedimentation deposition	Noise and vibration	or decrease)	Changes in sedimentation deposition	Noise and vibration	surface water body	surface water body
Overall status	Moderate	Agency to act to the room room table.						Hydromorphological supporting elements		4	4	,	-	1	1	,	-	×	1	×	×	х	×
Overall status objective	Coodby 2027							Physicochemical Effects		,	×	,	,	1	×	×	×	×	1	,	,	-	-
			J			Does the com	ponent comply with WFD of	octives Chemical effects		×	×	×	×	1	×	×	×	×	×	×	×	-	×
WFD status Component	WFD quality islamore	Method of checking compliance	Classification	Objective	Impact scor e Data confidence	Design certainty De terioration between status dieses	(mped morts to GES ARP	Only Only Only Only Only Only Only Only	Post miligadon impact sonre	Comment of the impact of 'Changes to channel footprist' on each element	Comment of the impact of 'Changes in flow velocity and volume (screase or decrease)' on each element	Comment of the impact of "Changes in sedimentation disposition" on each element	Comment of the impact of 'Changes to water body hydromorphology leading to changes in vive processes and habitats updinarm and downstream' on each alornent.		Comment of the impact of 'Changes to water body hydromorphology leading to changes in fiver processes and habitats upstream an downstream' on each element		n Comment of the impact of 'Changes' sedimentation deposition' on each slament	in Comment of the impact of Noise and vibration each element	Comment of the impact of 'Changes in flow velocity and volume (increase or decrease)' o each element	Comment of the impact of 'Changes in sedimentation deposition' on each element	Comment of the impact of Noise and vibration on each element	new or changes to existing	surface water body on each
Biological quality elements	Fluids		Moderate in 2015	Good by 2027	2 Low I	One Possible	Possible	Fish / oil screens to be included on the Intake. Firther assessment is no plant to determine whether impact of abstraction is significant on fath species		New abstraction anticipated to have limited footpast, but could impact on fish due to fis entrainment	The fish in the Rever Delph may be impacted by the changes, in level and waster quality due to the abstraction, particularly during the best less particles. The philosociality space or carried as part of the changes of the philosociality space or particle as part of the discovery. Meth Mediconals laws 2007, supposits that the statistication cased alots to a high for the medical fraction (reckating fasted, Brook Lampers, Boson Trace, Ballhead, Lampson (reckating fasted, Brook Lampers, Boson Trace, Ballhead, Lampson (and and Spined Calent Almbergh further assertment in required to destromine whether this impact is significant. On a processionary took this his assessed as an adviser impact of wasterloop's calls.	seamentation pattern downstream of the	Changes in flow volume and velocity could change sodimentation pattern downstras of the abstraction. This could affect.	a Through in water quality as a result of the abstraction, has the	No measurable effects antisputed as a result of changes in the hydromorphology on the interesting and in the changes of the changes of the changes of the change of the ch	No changes in flow and velocity	No changes in sedimentation expect	Polantial temponary disturbance during and as conduction; though the Birdy to move zee from impact and inventoration units day to be	Temporary infringuent localised changes to fi	Temporary infrequent localised changes to fits unlikely to effect sodimentation and espector		remporary introduction to caused	
	Inversionales	Guidance document available	Goodin 2015	Good by 2015	2 Low I	Daw Possibio	Possible	Further assessment is required to determine whether impact of abstractions significant on invertibilities species	2	It anticipated there will be minimal effects of the hydrological regime.	an insurinventionals in the liver Sulph and its impossibility to comprise liver lead materially also traditions. The splanning report compated as part of the project Phylonocolog sulph for Shaping counter options. — For the Seneral Most MacConst Liver 2007, supposed that the abstraction contained to the print of a Project and baseling and the splanning material soul pages risk of Project and baseling and the sixth content and baseling procedures the splanning soul for the splanning baseline procedures have been seen as an advance impact at another planting the liver sectorized and on a procedures to the procedure of the procedures the procedure of the special sectorization of the special sectorization of the special sectorization of the special sectorization of special se	 abstraction. This could affect biological quality elements, further investigation would be required 		polential for minor localised impacts, on fish and inventistrates.	assumed construction methods will compris of translations actitivies.	tiver base, using trenchiess method:	using transhioss methods	from impact and inventorates unlikely to be sensible to impact	biological elements status	unikoly to effect sodimentation and expected to the control of the	Temporary infrequent localised roles unifiedly to effect invertibrates as they are likely to be insentive to effects.	urilikoly to impact on biological diements status	antinduction of RMC as pipeline would comian rawwater from another materioty. See RMC assessment for more details.
Hydromorphological Supportin	Hydrological Rogime		Highin 2015	Supports Cood by 2015	2 Low I	Daw Possible	Possibile	Hydraulic modelling is required to determine the impact of abstraction on downstream flow regime.	2	Niew structure footprint anticipated to have no effect on hydrological regime	The Sear Disjah is lovel controlled and a lovel distration and we has been created for the lasseline (after no abstraction and with the instruction in place we be obligated. The abstraction is place model in the lasseline (after a lasseline of lassel in place place is set at 156m). The Lineal Austrian curve where the lovels will be redeced perticularly affect place lovel protectly affect on protecting the lovel will be redeced perticularly affect place lovely optically device (2014) where levels to logistic discrete protecting in lasse with and the abstraction. This reduction is level could like the advantage large large from the current riply status.		Potential increased sedimentation due to abstraction net espected to have significant effect on the hydrological regime	nt. No measurable impact anticipated on the hydrological regime	No measurable impact anticipated	No measurable impact anticipated	No measurable impact anticipated			Temporary infrequent discharges are anticipated to have minimal effects on the hydrological regime.			
	Mitigation Measures Assessment		Moderate or less in 2015	Good by 2027	1 Low I	ow No	No	No	1	New structure would create additional localised modification to the river bank morphology but not be of concern at waterbody scale	Changes in flow and velocity unlikely to significantly affect physical modifications pressure	Potential increased sedimentation due to abstraction not expected to have significant effect on mitigation measures	Potential increased sedimentation due to abstraction not espected to have significar effect on mitigation measures	no Normasurable impact anticipated on the mitigation measures assessments									
Physico-chemical quality elemen	Ammonia (otal as N) nts Dissolved surgern get Phosphato Tumpschatre	Numosical limits for classes. Calculator available Mamosical limits for classes.	Good in 2015 Ind in 2015 Help in 2015 Help in 2015 Help in 2015	Goodby 2015 Goodby 2027 Goodby 2015 Goodby 2015 Goodby 2015 Goodby 2015	1 Low 1 1	OW NO	No No No No	No No No No No No	1 1 1	No measurable impact anticipated	Abstraction is till ely to lead to minor changes in water quality due to changes in those (and therefore districts potential desemblem). Further assistanced is needed to understand this impact.	No measurable effects anticipated as a result of changes in the sedimentation deposition on the physico-chemicals	No measurable effects anticipated as a result of changes in the hydromorphology on the phylico-chemicals	Minor effects anticipated as a result of abstraction on the physico- chemicals.					No measurable effects articipated as a result changes in flow and velocity on the physics chemical elements	of No measurable effects anticipated as a result changes in sedimentation on the physico- chemical elements	of	No measurable effects anticipated as a result of changes in water quality on the physico-chemical elements	
Specific pollutants	Linuton		Highlin 2015	High	0 Low I	OW No	No	No	0					No measurable effects anticipated as a result of abstraction on chemicals								No measurable effects anticipated as a result of changes from temporary infrequent localised pipeline dischange	

D								Г				Ī		
Return to top of the page									Does the o	component comply with WFD o	abjectives			
		Relevant WFD Quality Element (RNAC) / Measure category 1 (PoM)	Category (RNAG)/Lead organisation (PoM)		Is this measure potential impacted by the scheme? (Yes/No)	Impact some assessment	Data confidence	agnost	Assists attainment of water body objectives	Impediment to GES/GEP	Compromi ses water body objectives		Post mitigation impact score (- 2 to 3)	New or increased surface water abstracti
Reasons for Not Achieving Good (RNA	521381	Dissolved onygen	Sector under investigation		No									
Reasons for Not Achieving Good (RNA	519491	Fish	Local and Central Government	Physical modifications	Yes	1	Low	Low	No	No	No		1	New intake structure will add another physical modification, however this will be minor and with mitigation is unlikely to ha
Reasons for Not Achieving Good (RNA	519495	Fish	Local and Central Government	Physical modifications	Yes	1	Low	Low	No	No	No		1	an imapct other projects to improve this pressure
Reasons for Not Achieving Good (RNA	519493	Fish	No sector responsible		No									
Spaceage for Not Achieving Coast (SA)	E10407	Cirls	hin contac recessoribie		Mo									



oring Key												
pact	Impact Score	Description										\neg
		element for the ent	ine waterb	ody		tial to lead to the im						
neficial -1 Impacts that, when taken on their own, have the potential to lead to a minor localised of the overall WFD status of the waterbody or any quality elements.									emporary imp	rovement the	t does not aff	ect
riminimal	0	No measurable cha										
w	- 1	or more of the gust	ity eleme	nts but w	ould not re	potential to lead to rult in the lowering o	f WFD at	atus. Impe	cts would be v	ery unlikely	to prevent any	
dun	2	environment that n	nay result	in the te	mporary re		us. Impai	ts have th	e potential to p	nevent targe	WFD objects	v en
		Impacts when take	n on their	own hav-	e the poter	tial to lead to a sign	ficant of	ect and pe	rmanent deter	cration of WI	D status.	

	Fers Reservoir - Proferred Option	Go to RNAG/PoM table at bottom of the page																					
Waterbody ID	GB205033000050		1						Activity	New	WTW (left back from a watercouns)	New pipe lines involving waters	aurus crowings with no in channel modifications	New It	spounding reservoir (in line/heat to watercourse, or i	large compared to watercourse) - excluding abstraction/dischar	30			Maintenance of pipe lines (including draining pi	orline)		Below ground structures (that's hetaining wall) with associated devastering
Waterbody name	Middle Level								Construction, Operation or Decommissioning activ	ity	Construction	Conve	uction and operation		Constructio	on and operation				Operation			Contruction
Waterbody type	Rust								Potential Impacts of asset (Yollowing consideration bedded miligation)	Noise and vibration	Change in water quality due to new or changes to sail discharge of surface water into surface water body		Changes to water body hydromorphology leading to changes in river processes and habitaits updream a downstream	Changes to channel footprint	Noise and vibration	Changes to water body hydromorphology leading to changes river process and habitats updream and downstream	ir Changes in flow velocity and volume (Increase or decrease)	Changes in flow velocity and volume (ncrease) or decrease)	Changes in sedimentation deposition	Noise and vibration	Change in water quality due to new or changes to existing discharge of surface wa into surface water body	ater Change in RWS present in surface water bod	Change in water quality due to discharge of groundwated a surface water body
Hydromarphological designation	n Artificial	Action: Obtain HMWR measures information from the Environment Agency to add to the RNAG/PoM table.							Biological Effects	-		-	don't	-				-					
Overall status	Maderate								Hydromorphological supporting elements	х	×	,	-		,	·	,	х	х	x	×	x	x
verall status objective	Good by 2027								Physicschemical Effects	х	✓	x	×	y.	x	*	x	-		-	·		
			_				Does the compo	nent comply with WFD object (post mitigation)	Chemical effects	х	✓	x	×	y .	x	*	x	×	×	×	·		
WFD status Component	MED quality oloment	Method of checking compliance	Classification	Objective	Papel voce	Data orditore	Date processory Status days	Improfessible GES AGE F	s signature applied Affiliation applied	To the second of the impact of Noise an elbration' on each element	Comment of the impact of 'Change in water quality of new or changes to existing discharge of surface water surface water body' on each element		Comment of the impact of 'Changes to water body hydromorphology leading to changes in niver processes and habitals upot earn and downstream' on each element	Comment of the impact of 'Quarges to-thermal fooliprist' on each selement	Comment of the Impact of Native and vibration' on such element	Comment of the Impact of 'Changes to water body hydronophidog leading to changes in river processes and habitats upstream and downtream' on each-element	Comment of the impact of Changes in flow velocity and value (increase or decrease) on each element	Comment of the impact of "Changes in Sow selectly and volume (nor save or decrease)" on each element	Comment of the impact of 'Changos in widerectation deposition' on each element	Comment of the impact of Wolse and wibration' on each element	Comment of the impact of "Change in water quality due to new or changes to noticing discharge of surface water into surface wat body on each element		Comment of the impact of 'Change in water quality due discharge of groundwater to a surface water body' on e element
Biological quality element	Invertebraties.	Suidono document available	High in 2015	Good by 2015	1	Low Lo	ow No	No 5	No	Nio measurable effects anticipated to biological quality elements as a real pole and vibration during construc- tion new WTW, inventebrates and		No measurable effects anticipated as a nor of changes in sedimentation deposition on biological quality elements. At this stage	If No measurable effects antiquated as a result of thanges in hydromorphology on the biological quality.	The size of the reservoir facifiplint will result in loss of numerous unail field drainage disthes. This loss of open-channel is assessed to potentially lead to minor localised effects on biological status elements.	Noise and vibration may impact the biological quality elements within this waterbody as a result of the construction of of the reservoir. Patential temporary distances during construction, though		The size of the reservoir footprint will result in ions of some small field drainage distance and approximately 1.1% of the calcidement. This could lead to a slight reduction in the flow a velocity in the Sixteen foot Orain and the Forty Foot or		No measurable effects anticipated	No measurable effects anticipal ed	No measurable effects anticipated	NVS pathways already exist but potential to introduce additional INVS sources or pathways from upstream areas of transfer.	Assuming good construction practice any discharge of groundwater to surface water during construction will to a similar quality to that already contained in the
	Macrophylini and Phylobenthox Combined	Calculator available	Moderate in 2015	Good by 3027	1	Low Los	ow No	No 5	No	the new WVV. Inversions and macrophytes and phytoberés. Ikely insensitive to change	to be	assumed construction will involve trenchle activities.	will involve treathiess activities.	potentially lead to minor localised effects on biological status elemente	nemporary data traces during construction, should fish likely to move away from impact and invertebrates unlikely to be sensitive to impact	reduction in the flow and velocity into the Great Ours into which these shared crash. The case of this reduction in flow skillship to be minor compand to the catchesed size for this transitional vestimourum, but madd lead to minor incalled effects on biology due to changes in hydromorphology	potentially lead to minor localised effects on biology.	No measurable effects anticipated	No measurable effects anticipated	No measurable effects anticipal ed	No measurable effects anticipated	MMS pathways already exist but potential to introduce additional IMMS sources or pathways from opetnam areas of transfer.	variencourses. No impact anticipated on biological statu elements
Hydromorphological Support Elements	Hydrological Regime		Does Not Support Good in 2015	Does Not Support Good by 2015	۰	Low Los	ow No	No. 8	Hydrology study to understand potential reduction in subthewnt area (and impacts on flow/feverly).	0	No measurable effects anticipated	No measurable effects anticipated	No measurable effects anticipated		No measurable effects anticipated as a result of noise and vibration	The size of the reservoir bodynist will result in loss of some small field drainings district, which could lead to a slight chan in hydromythidigy but this is expected to be negligible on a waterbody scale.	This sits of the reservoir facilities that it is not drawn small field distinguish distinution stage from the calciminate. This model lead to a slight moduration in the flow a validately in the Salesen but to lead a set of the Serly Float or Vincopien's Chails but which these channels deals. The seals this reduction in flow is likely to be refer compared to the Posichement side or those watercourse, however, this could lead to mixer broadless deflicts on the hydrological regime in this area.	and lie of No measurable effects anticipated	No measurable effects articipated	No measurable effects anticipated	No measurable effects anticipated		No measurable effects antidgated
	Miligation Measures Assessment		Moderate or less in 2015	Good by 2027	1	Low Los	ow No	No 5	No	۰		No measurable effects anticipated	No measurable effects antidipated	baservoir will be constructed over the footprint of numerous weal frainings dishner, all of which are artifical, maintained field drainings dishner. The approximately length of loss channel is estimated to be Maint. This would lead to minor localised loss of open channel, which madd impact on the midigation measures assessment.									
Physico-chemical quality elem	Armonia (ctal sink) Biochemical oxygen demand Stroched oxygen pit Houghes Froughes Fronzeshize	Numerical limits for classes Numerical limits for classes Calculator available Numerical limits for classes	Sood in 2015 Sood in 2015 Sood in 2015 Righ in 2015 Sood in 2015 High in 2015	Cond by 2015 For data available Cond by 2015		Low	SW No SW No SW No SW No SW No	No 5 No 5 No 5 No 5 No 5 No 5	No N	1	Winor impacts on physico-thermials as a result of cha to water quality.	nger.						No measurable effects anticipated	No measurable effects anticipated	No measurable effects anticipated	No measurable effects anticipated		Assuming good contraction practice any discharge of groundwater to surface water during contraction will to a similar quality to that already contained in the watercourses. The reservoir is especied to be lined and lessage from security for groundwater and then surface water is open security.
Priority hazardous substance	Acid Neutralining Capacity Birnos (b) and (b) fluoranthene Beras (b) and (b) fluoranthene Beras (b) (b) persiyene and indiese (123 cd/pyrene Beras)(b) press Beras)(b) press Beras)(b) press Beras)(b) press Beras)(b) press Beras (b) press B	Numerical Institute for classes 1.00 direction	(iii) in 2015 Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015	Coof by 2015 Coof Coof	0 0 0 0 0	tow to tow to tow tow tow tow tow tow to	SW No SW No SW No SW No SW No SW No	100 1	No.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Priority substances.	Moreony and In Compounds 1 3 different flame Altrasfine Flucrasthone Land and this Compounds Skikel and its Compounds	COS describe COS describe COS describe COS describe COS describe COS describe	Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015 Sood in 2015	cont cont cont cont cont cont	0 0 0 0	low to to tow to tow to tow to tow to	No N	\$60 \$ 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	No.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											No measurable effects anticigated		No measurable effects antidgated
Specific pollutants	Vertex/force/hanol Simusion Frindsonne thana Armaic Copper Ivon	DOS directive LOS directive LOS directive	Sood in 2015 Sood in 2015 Sood in 2015 High in 2015 High in 2015	Cool Cool Cool High High	0 0 0 0	low to lo	SW No SW No SW No SW No SW No	No 5 5 No	No.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Other chemicals	Einsron Manganese Zinc Aldrin, Childrin, Endrin & Aodrlin Carbon Tetradrindide Carbon Tetradrindide	ICS directive ICS directive ICS directive ICS directive	High in 2015 High in 2015 High in 2015 Sood in 2015 Sood in 2015 Sood in 2015	High High Sood Sood	0 0 0	Low	No N	No 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	No.	0													

Retu	rn to top of the page	1								Does the	component comply with WF	2 objectives			
RNAG	Politina	м	Relevant WFD Quality Element (EMAG) / Measure category 1 (Pold)	Category (RNAG) fixed organisation (Polif)	National Sumi Header (RNAG) / Title (PoM)	is this measure potential impacted by the scheme? (Yes/No)	by pack some assessment	Data confidence	Disagnoretainty	Ausists attainmen t of water body objectives	Impediment to GES/GEP	Compromi ses water body objectives	Miligation applied	Ford mitigation impact score (- 2 to 2)	New impounding reservoir (in line/head to watercourse, or large compared to watercourse) - excluding abstraction/discharge
RNAG		53128t	Macophytes and Physiobenitins Combined	Agriculture and rural land management	Physical modifications	Sos	1	Low	low	No	No	No		1	New reservoir will remove a number of small drainings distries, increasing the physical modifications in the cast-ment. The reservoir does not impact on the mal scatenous set in this caldment and is considered unlikely to significantly reduce the improvements that can be made.
RNAG	s for Not Achieving Good	53405	Nacrophytes and Phytobenthos Combined	Agriculture and rural land management	Pollution from rural areas	No									
Reason (SNAC)	s for Not Achieving Good	53000	Biydrological Regime		No further action (Flow is below the EFI but NOT casaing an ecological failure)	fos	1	Low	tow	No	No	No			Non reservoir will remove a number of until drainings diches, slightly decreasing flow in the larger resolving sentenceurum. Given the scale of the change this is not. Baily to significant in heading to a reduction in the improvements that can be made.

Laver 1 associated	impact	Impact Score	Description
	Verybeneficial		Impacts that, taken on their own, have the polyntial to lead to the improvement in the ecological status or polyntial of a WFD quality element for the entire waterbody.
	Daneficial	-d	impacts that, when taken on their own, have the potential to lead to a minor localised or temporary improvement that does not affect the overall WFD status of the waterbody or any quality elements.
assessment	Nohrinimal		No measurable change in the quality of the water environment or the ability for target WFD objectives to be achieved.
	Low	1	impacts that, when taken on their own, have the potential to lead to a minor localised, short-term and fully reversible effects on one or more of the quality elements, but would not result in the lowering of WFD status, impacts would be very unlikely to prevent any target WFD objectives from being achieved.
	Medium		impacts that, when taken on their own, have the potential to lead to a widespread or prolonged effect on the quality of the vater environment that may result in the semporary reduction in WFD status. Impacts have the potential to present target WFD objectives from being achieved.
assourced	High		Impacts when taken on their own have the potential to lead to a significant effect and permanent deterioration of WFD status. Potential for high impact on

mottmac.com